
Preliminary Proceedings of the

MODELS 2010
Doctoral Symposium

Preface

This volume contains the papers presented at Doctoral Symposium of the 13th

ACM IEEE International Conference (MODELS 2010) held on October 4th,

2010 in Oslo.

The goal of the Doctoral Symposium is to provide a forum in which PhD

students can present their work in progress and to foster the role of MODELS as

a premier venue for research in model-driven engineering. The symposium aims

to support students by providing independent and constructive feedback about

their already completed and, more importantly, planned research work.

We received 28 submissions, each submission was reviewed by 3 programme

committee members. The committee decided to accept 10 papers for presentation

in the symposium.

We thank the members of the programme committee for their help in sup-

porting young researchers in shaping their scientific work, the MODELS 2010

Organizing Committee for hosting the Doctoral Symposium, as well as the Easy-

Chair team for providing the system to coordinate the review process.

September 2010 Brian Elvesæter

Bernhard Schätz

Conference Organization

Programme Chairs

Brian Elveæter

Bernhard Schätz

Programme Committee

Ruth Breu

Betty Cheng

Juergen Dingel

Brian Elveser

Gregor Engels

Robert France

Jeff Gray

Gerti Kappel

Gabor Karsai

Joost-Pieter Katoen

Ingolf Krueger

Jochen Küster

Pieter Mosterman

Ivan Porres

Alexander Pretschner

Bernhard Rumpe

Bernhard Schätz

Jonathan Sprinkle

Friedrich Steimann

Ketil Stoelen

Stefan Wagner

External Reviewers

Birgit Penzenstadler

Jan Olaf Blech

Mario Gleirscher

Markus Look

Steven Völkel

Thomas Kurpick

Tim Gülke

Table of Contents

Towards the Verication of State Machine-to-Java Code Generators for
Semantic Conformance . 1

Lukman Ab Rahim

Reuse in Modelling Method Development based on Meta-modelling 7
Alexander Bergmayr

Rearrange: Rational Model Transformations for Performance Adaptation . 13
Mauro Luigi Drago

A Model Driven Approach to Test Evolving Business Process based
Systems . 19

Qurat-ul-ann Farooq

A Transformational Approach for Component-Based Distributed
Architectures . 25

Fabian Gilson

Modeling Complex Situations in Enterprise Architecture 31
Hyeonsook Kim

Reference Modeling for Inter-organizational Systems 37
Dieter Mayrhofer

Applying Architecture Modeling Methodology to the Naval Gunship
Software Safety Domain . 43

Joey Rivera

A Model-based Framework for Software Performance Feedback 49
Catia Trubiani

Scenario-based Analysis of UML Design Class Models 55
Lijun Yu

Towards the Verification of State
Machine-to-Java Code Generators for Semantic

Conformance

Lukman Ab Rahim

School of Computing and Communications, InfoLab21,
Lancaster University, Lancaster LA1 4WA, UK,

abrahim@comp.lancs.ac.uk

Abstract. Verifying code generators is as important as verifying the
generated code itself. One of the challenges in verifying code generators
is the complexity of the code generator. This project proposes an ap-
proach to verify semantic conformance of UML State Machine-to-Java
code generator, which is a complex code generator because of the com-
plexity of the UML State Machine notation and the dissimilarity between
source and target languages. The approach uses a model checker to ver-
ify the generated code that is annotated by assertions. The assertions
represent the UML State Machine semantics.

1 Introduction

Verification is a crucial activity in software development. When code generators
are used to develop software, the correctness of the code generator is as important
as the correctness of the software itself. A faulty code generator means a faulty
generated code.

This project proposes an approach, we call Annotation-Driven Model Check-
ing (ADMC), to verify code generators. We restrict this project to UML State
Machine-to-Java code generators because of these reasons: 1) UML is a com-
monly used modelling language, and 2) UML State Machine notation has a well
define semantics.

Verifying a code generator is a challenging endeavor because it involves three
major tasks: 1) verifying syntactic correctness of the generated code, 2) verifying
preservation of source model’s semantics, and 3) verifying conformance to the
modelling language semantics. The first task can be easily achieved by using
a compiler. The second task can be accomplished by comparing the behaviour
of the source model with the behaviour of the generated program. The third
task checks the behaviour of the generated program with the semantics of the
modelling language. Verifying preservation of the semantics of the source model
is arguably the hardest but verifying conformance is challenging nontheless. This
project focuses on verifying code generators for semantic conformance.

Verifying a code generator may also be difficult because of the complexity of
the code generator. A code generator is complex due to the complexity of the

1

source model’s language. For example, UML State Machine notation has Com-
posite and Submachine state that can be entered in various ways. Each entry
method needs to be catered and the semantics followed by the code generator.
The complexity of a code generator also depends on the similarity between the
source model’s language and the generated code’s language. For instance, gen-
erating a Java code from UML class diagram is simpler because both languages
support the concept of classes, attributes and methods. However, generating from
UML state machine is more difficult because Java does not explicitly support
the concept of states, events and transitions.

The main challenges of this project is to come up with an approach that is: 1)
applicable to verify semantic conformance of different code generators, 2) usable
during development of realistic systems that are modeled using state machine,
and 3) advantageous to the software verification activity. The first challenge
is important because we do not want to propose an approach that can only be
used for specific code generators. The second challenge is a problem of scalability
since we are using model checking and using this method tends to suffer from
the state-space explosion problem when verifying complex concurrent systems.
The final challenge is to produce an approach that is of value to the verification
of systems.

The following section discusses existing work related to this project. Section
3 explains our approach to verify semantic conformance, and Section 4 explains
our plan to evaluate the approach. The final section desribes the project’s current
status and contributions.

2 Related Work

There has been a wide body of work on verifying that model transformations are
semantics-preserving – in the sense that the application-specific model semantics
hold in the generated model (or code). For example, Varro and Pataricza [1] use
model checking to check properties in both source and target models. If both
models have the intended properties, the transformation is said to be seman-
tically correct. Staats and Heimdahl [2] use a similar approach when verifying
semantic correctness of a Simulink-to-C code generator.

To ensure semantic preservation, Barbosa et al. [3] propose an extension to
the MDA four layered architecture. They propose the addition of a semantic
metamodel and model into the architecture. The verification is carried out for
both static (well-formedness contraints) and dynamic (model behaviours) se-
mantics. The approach uses a formal checker to verify the conformance of both
static and dynamic semantics based on the semantic metamodel. This approach
requires a lot of effort because the semantic models need to be created for each
source and target models.

Chaki et al. [4] and Pnueli et al. [5] propose the use of an approach based
on proof-carrying code (PCC) [6, 7] but where model checking is combined with
the use of a theorem prover, which is normally used in PCC. Autofilter [8], Au-
toBayes [9], and AutoCert [10] are three tools that apply the principles of PCC

2

to verify code generators. These tools use theorem provers guided by annota-
tions to verify the preservation of certain semantic properties. Autofilter and
AutoBayes are restricted to the domain of geometric state estimation and data
analysis problems respectively. AutoCert improves on Autofilter and AutoBayes
by being a domain independent tool and provides a model-driven mechanism to
generate the annotations.

Ensuring the semantic conformance of Java programs generated from UML
state machines are investigated by Blech et al. [11], and Pintér and Majzik [12].
Blech et al. ensure the conformance of automatically generated Java programs
by proving the Isabelle/HOL formalizations of the Java programs. Pintér and
Majzik ensure the conformance of the Java programs by generating the Java
programs from proven state machines. They proof the correctness of the state
machine by translating it to Extended Hierarchical Automata (EHA) and check
the EHA using the SPIN model checker.

3 Annotation-Driven Model Checking

Annotation-Driven Model Checking (ADMC) is an approach we created to verify
semantic conformance of State Machine-to-Java code generators. The basic idea
of the approach is to verify the code generator by checking the behaviours of
the generated code using a model checker. The generated code’s behaviours are
checked using assertions, which are added into the generated code. The assertions
capture the semantics of state machines as a statement with boolean flags and
auxiliary methods1. Using assertions made of boolean flags have been proven
sufficient to represent the semantics as being shown in [13] where the authors
also use boolean flags in formalizing the semantics.

ADMC is an indirect approach to verifying code generators. We chose this
indirect method to avoid the complexity of the model transformations. Further-
more, model checking semantic conformance can be practically achieve (using
available tools) by checking if the source language semantics are preserved in
the generated code. Due to ADMC being an indirect approach, ADMC does not
guarantee semantic conformance of all possible state machines. Instead it only
guarantees semantic conformance for the state machine use in the verification.
Verifying semantic conformance of code generators is more practical this way
considering the complexities of UML State Machine notation.

Figure 1 shows the components in ADMC. The Annotation Transformation
(AT) is a set of transformation rules that will generate the Verification Com-
ponent (VC). The AT is unique to the code generator being verified because
each code generator translates the UML State Machine notation differently. As
a result of these differences, the form and the place to add the assertions are
different. To create the AT, how the code generator translates the UML State
Machine notation must be understood. The translation can be understood by
studying the transformation rules, or if the rules are not available, from the
generated code.
1 Auxiliary methods are used to simplify the assertions.

3

Fig. 1. Annotation-Driven Model Checking

The VC is a Java code that extends the generated code with assertions to
verify the generated code. The assertions are in the VC (not in the generated
code) because we want ADMC to verify commercial code generators. If the as-
sertions are to be in the generated code, the code generator needs to be modified,
and most of the time this is impossible because the transformation rules are not
available.

The generated code and the VC will be the input to the Java Path Finder
(JPF) [14] model checker. JPF model checks both codes and the VC, and returns
the result. The result can be a counter example (if the model checker detects
any assertion violation) or a conformation on the success of the model checking.
The counter example will show which semantic is violated, where in the code
that violates this semantic and the execution trace that leads to the violation.
Using these information, we can identify the problematic transformation rules.

The ADMC appproach can be used in three situations: 1) use by tool devel-
opers to verify their code generator, 2) use by tool users to evaluate conformance
of code generators, and 3) use by testers to verify generated code provided by a
different party. When use by tool developers, the AT is developed once for the
current release and reuse for future releases. The same advantage is obtained by
the testers where they can reuse the AT to verify different generated code cre-
ated from the same code generator. Tool users can use ADMC to select the best
code generators that conform to their properties of importance. These properties
may be the tool users’ interpretation on the open semantics (known as variation
points in UML) of the modelling language. For instance, the UML specifica-
tion does not specify how the event pool is implemented. Thus, the tool users

4

may implement the event pool as a queue or a stack, and verify the semantics
associated to the two data structures.

4 Evaluation Plan

Three evaluations have been planned for this project. The first evaluation eval-
uates the applicability of the approach to verify different code generators. This
evaluation is conducted by using ADMC to verify several commercial code gen-
erators. Two commercial code generators, Rhapsody [15] and Visual Paradigm
[16], have been verified.

The second evaluation evaluates the scalability of the approach for the devel-
opment of realistic systems. One of the way to use ADMC is to verify generated
code provided by other parties. Therefore, when confronted with a complex sys-
tem that might suffer from state space explosion, ADMC must be able to handle
this situation. The outcome of this evaluation is a set of state-space reduction
methods that can be applied with ADMC, and how to apply them. We plan to
use three realistic systems as case studies: 1) Center TRACON Automation Sys-
tem (a system to update weather information for air traffic control), 2) Software
Define Radio (a radio communication system), and 3) VoiceYourView (a system
that captures public opinions and concerns).

The third evaluation attemps to measure how much ADMC reduces the ver-
ification effort during system testing. We plan to investigate what are the ac-
tivities during verification and how much effort each activity needs. We also
need to identify in which activity one verifies semantic conformanace and how
much ADMC reduces the effort in this activity. We have not decided on how to
measure effort.

5 Contributions and Current Status

This project proposes an approach to verify semantic conformance of code gener-
ators. The approach uses model checking to verify the source language semantics,
which are specified as assertions. The approach is used to verify UML State Ma-
chine semantics for State Machine-to-Java code generators. However, we believe
the approach can be used for other modelling and source code languages. Veri-
fying code generators for other languages using ADMC requires the availability
of a model checker suitable for the properties and the generated code.

Another contribution is a model-driven implementation to a selected few
state-space reduction methods. These methods are necessary since ADMC uses
model checking (normally associated with scalability problem due to state space
explosion) to verify the generated code.

Currently we have develop the approach and verify two commercial code
generators. From these verifications, both code generators do not fully conform
to the semantics of UML State Machine.

5

References

1. Varró, D., Pataricza, A.: Automated formal verification of model transformations.
In Jürjens, J., Rumpe, B., France, R., Fernandez, E.B., eds.: CSDUML 2003: Crit-
ical Systems Development in UML; Proceedings of the UML’03 Workshop. Num-
ber TUM-I0323 in Technical Report, Technische Universität München (September
2003) 63–78

2. Staats, M., Heimdahl, M.: Partial Translation Verification for Untrusted Code-
Generators. In: International Conference on Formal Engineering Methods
(ICFEM’08), Springer (2008) 226–237

3. Barbosa, P.E.S., Ramalho, F., de Figueiredo, J.C.A., dos S. Junior, A.D.: An
extended mda architecture for ensuring semantics-preserving transformations. In:
32nd Annual IEEE Software Engineering Workshop, 2008. (October 2008) 33 –42

4. Chaki, S., Ivers, J., Lee, P., Wallnau, K., Zeillberger, N.: Model-Driven Con-
struction of Certified Binaries. In: 10th International Conference, MODELS 2007,
Springer (2007) 666–681

5. Pnueli, A., Shtrichman, O., Siegel, M.: The Code Validation Tool CVT: Automatic
Verification of a Compilation Process. Software Tools for Technology Transfer 2
(1998) 192–201

6. Necula, G.C.: Proof-carrying Code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL ’97), ACM
(1997) 106–119

7. Colby, C., Lee, P., Necula, G.C.: A Proof-Carrying Code Architecture for Java.
In: Computer Aided Verification, Springer-Verlag (2000) 557–560

8. Denney, E., Fischer, B., Schumann, J., Richardson, J.: Automatic Certification
of Kalman Filters for Reliable Code Generation. In: IEEE Aerospace Conference,
IEEE (2005) 1–10

9. Schumann, J., Fischer, B., Whalen, M., Whittle, J.: Certification Support for
Automatically Generated Programs. In: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, IEEE (2003) 1–10

10. Denney, E., Fischer, B.: Generating Customized Verifiers for Automatically Gen-
erated Code. In: Proceedings of the 7th International Conference on Generative
Programming and Component Engineering (GPCE ’08), ACM (2008) 77–88

11. Blech, J.O., Glesner, S., Leitner, J.: Formal Verification of Java Code Generation
from UML Models. In: 3rd International Fujaba Days 2005-MDD in Practice.
(2005) 49–56

12. Pintér, G., Majzik, I.: Automatic Code Generation Based on Formally Analyzed
UML Statechart Models. In: Formal Methods in Railway Operation and Control
Systems, Budapest, Hungary (May 2003) 45–52

13. Mostafa, A.M., Ismai, M.A., El-Bolok, H., Saad, E.M.: Toward a formalization of
uml2.0 metamodel using z specifications. In: Proceedings of the 8th ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, Qindao, China, IEEE (July 2007) 694–701

14. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, New York, NY, USA, ACM (2004)
97–107

15. IBM: Rhapsody. Website http://www-01.ibm.com/software/awdtools/rhapsody/.
16. Visual Paradigm International: Visual paradigm. Website http://www.visual-

paradigm.com/.

6

Reuse in Modelling Method Development
based on Meta-modelling�

Alexander Bergmayr

Faculty of Computer Science, University of Vienna
Bruenner Strasse 72, 1210 Vienna, Austria

ab@dke.univie.ac.at

Abstract. Systematic reuse is one obvious step to cope with the com-
plexity and high effort involved in modelling method development. This
principle, however, is still rarely adopted since today’s development plat-
forms lack adequate mechanisms promoting reusability. To alleviate this
deficiency, an ontology-based description framework, providing opera-
tors for the extraction, discovery, match and assembly of Method Design
Fragments is proposed. In this way, potential reusable artifacts are re-
garded as explicit abstractions of existing method designs and become
operationalized through an extensible reuse library leading to increased
productivity during method development and higher quality results with
reasonable effort.

Keywords: Modelling Method Development, Design Fragment, Reuse

1 Introduction

The construction of new modelling methods [1], providing the necessary concepts

capable to capture the relevant domain knowledge represented through models, is

one major challenge in Model-Driven Engineering (MDE) [2]. Modelling method

development is a complex task and the effort involved is usually extensive [3].

One obvious step to mitigate this complexity and high effort is to emphasize

the reuse during method development. Systematic reuse in the development of

modelling methods is, however, rarely adopted. This is, among others, due to

the fact that in contrast to contemporary ’general-purpose’ languages most for-

malisms of today’s platforms for modelling method development lack adequate

mechanisms promoting reusable artifacts. As a consequence, method engineers

can hardly draw on support by method reuse libraries, thus modelling meth-

ods become realized usually from scratch without considering existing ones that

might entirely or partly be reused. Support for extracting these reusable method

artifacts in a form to allow discovering them, identifying composable elements

thereon, and their assembly leverage the reuse in modelling method develop-

ment. To explore this assumption, the rest of this work discusses the notion of

Method Design Fragments inspired by Brinkkemper [4] but interpreted in terms

of concerns known from aspect-oriented modelling.

�
This work has been partly supported by the EU project PlugIT (ICT-231430) and the Austrian
Federal Ministry of Science and Research (BMWF).

7

2 Proposed Solution

When adopting the principle of reuse during development of new modelling meth-
ods, higher quality results with reasonable effort can be expected. Consequently,
an ontology-based framework for establishing an extensible library of reusable
method design fragments is outlined (cf. Fig.1 (A)). Core activities supported
involve the Extraction of such fragments from existing modelling methods, their
Discovery in a library relating and maintaining them, the Match between (re-
trieved) fragment elements and the Assembly of matched ones to provide a single
unit for reuse or their amalgamation resulting in the pursued method.

!"#$%%&'(
!$)*"#

+$,-$# !"#
$"%&'#($')%*

%+,
-".+//)%*
-+'0".&

.+1/"2+.
-".+//)%*
-+'0".&

!"#$" "%&'(") *+)"((,%-
*"./+) 0"1"(+23"%.

."/0"-12%$
%

3"4/5"/+
6 %47+8 9'#)%* :

-
".+//

-+'0". ;+&)*%
<#4*7+%'

&

-+'0". ;+&)*%
<#4*7+%'
&

-+'0". ;+&)*%
<#4*7+%'

2%

+' ".&

+='#4$' 4&&+7>/+

-+'0". ;+&)*%
<#4*7+%'

* > !

:#"$+&&

?$')@)'2
3$14&'(

0
5%$/$')

A#*4%)&4')"%4/
B%)'

:+#!"#7+#

04&

>+/"%*&C"

:#"$+&&
/)%*

D4%*(4*+

56)+17)&"' 8&-7"4$+9 :--$/2%9

-+'0".
;+&)*%

<#4*7+%' ;0$' !"#$%
< &

4+%5"2.#&(6,"7

-+'0".
;+&)*%

<#4*7+%'

!1)7* &(>&+E(+%'A!

5+/4')"%&0)1 6 %47+89'#)%*
:7)"+ 3"4/

!"#$"
8,'9&9:

."/0"-12%$
5%$/$')

:+#!"#7+#

3
"4/D4

-+'0".
;+&)*%

<#4*7+%'

*

; ! # %

<$0"-&)"+9

#+/4'+. '"

#+/4'+. '"
* 1

?*+%' 5"/+:"&)')"%

C4&F

5%$/$')

&

."/0"-12%$
5%$/$')

-
".+//)%*

%*(4*+

;0$'!"#$%
<$0"-&)"+9#+/4'+. '"

;32("3"%.&.,+% 6,"7 >+/"%*&C"

04& A#*4%)&4')"%4/
B%)'5"/+

3$14&'(

."/0"-12%$
5%$/$')

6 %47+8 9'#)%*
6 &F)//&89'#)%*

5+&"(#$+
:/4

D4%*(4*;32("3"%.&.,+% 6,"7 >+/"%*&C"

:+#!"#7+#

* 4%%)%*
*+

: =

Fig. 1. Framework for reusable Method Design Fragments (A), Example (B)

In more detail, fragment extraction is operationalized through abstraction
[5] involving to select or generalize particular method artifacts, or filter prop-
erties assigned to them. Considering the example on the right part of Fig. 1, a
simple process modelling language (as one major part of a prospective method),
comprising Activity and Process extended with concepts from the area of
goal modelling and resource planning is going to be developed. In fact, differ-
ent concerns become composed into one language. A reuse library contains the
language constructs for the aspired extension. Whereas the applied selection on
the resource planning language comprise all constructs, the skill property of
the Role element has been filtered. In terms of the goal modelling language, the
selection prunes the former while preserving compatibility [6] as (instance) mod-
els conforming to the extracted fragment still conform to the original language.
This compatibility is, however, not always intended (e.g., deep inheritance hier-
archies) hence, flexibility of extraction operators is required during application.
To allow discovering reusable fragments, the focus is turned on concepts, rela-
tionships and properties underlying a method, i.e., the ontological viewpoint of a
methods’s conceptualization is going to be addressed. Accordingly, an ontology-
based approach for the description of fragments is aspired not only as a vehicle

8

for abstracting over potential multiple model repositories to allow high-level

queries, i.e., a data integration scenario but also to benefit from capabilities

for consistency or membership validation. The latter is of particular interest

for validating extraction results when, for instance, compatibility is expected as

mentioned before. On the other hand, consistently assembled concepts admit

their instantiation. Before addressing the assembly, the concepts involved need

to be identified. Considering the example, the Role constructs, and the Process
and Task constructs are candidates for assembly. Matching techniques, available

for ontologies support the finding of concept correspondences even if syntactical

matches could not have been derived as it is the case for Process and Task.
Finally, the assembly supports weaving matched fragments following a certain

strategy (cf. [7]). In the example, constructs highlighted as composable became

assembled using a merge operation to form a single construct.

3 Expected Contribution

By the proposed approach for reuse in modelling method development, three

main contributions are expected.

Reusable Business Process Modelling Design Fragments. To allow utilizing a

concrete library comprising different reusable artifacts, the first main contribu-

tion is extracting and cataloging design fragments. To initiate this investigation,

the area of business process modelling is intended to be considered due to the

diversity of available formalisms with different expressiveness but also concepts

that are common to all of them. In this way, a business process modelling reuse

library becomes established, indeed also useful for experiments to validate the

proposed approach.

Operators for Method Design Fragment Extraction and Assembly. The adap-

tion or extension of existing, or the building of new operators is required allowing

their applicability for a broad range of method development scenarios when con-

sidering current formalisms (cf. ECORE, EMOF or KM3, to mention just a

few) for meta-modelling and intractable diversities (e.g., different terminology

for concepts identical in meaning) that come along with them. Since most for-

malisms, however, adhere to class-based concepts (cf. [8]), the provisioning of

generic operators is feasible. Considering extraction operators, process models

as discussed in [9] may serve as a source for deriving requirements while on

the other hand, literature in the area of meta-model composition (as further

discussed in Section 4) and approaches applying aspect-oriented techniques for

weaving language concerns (cf. [10]) pose grounding for further investigation on

assembly operators.

Description Framework for Reusable Method Design Fragments. Extracted

method design fragments need to be described and properly arranged in a cat-

alog establishing a reuse library utilized by engineers during method design.

To support the construction of such a library, the development of an ontology-

based description framework is the third main contribution. In this way, po-

tential reusable artifacts implemented by arbitrary formalisms for method de-

velopment become explicit through method design fragments although the uti-

lized formalisms may not necessarily provide reuse mechanisms. The advocated

9

ontology-based approach allows anchoring these fragments to the body of do-

main knowledge [11] a method is (explicitly or implicitly) committing to. Sharing

the analysis results of a particular domain across methods with similar needs,

requires carefully considering their intended meaning which may include opera-

tional semantics particularly when methods are behavioral in nature. Available

literature aiming to couple ontologies and meta-modelling in general (cf. [12] a

workshop series dedicated to ontologies in MDE), and proposals for capturing

method concepts in terms of ontological descriptions (cf. [13]) and model-based

(cf. [14]) as well as ontology-based search (cf. [15]) in particular are of relevance.

4 Related Work

Work that is related to the proposed approach is discussed according to the

reuse principle as well as the consideration of ontologies in modelling method

development.

Modelling Language Reuse. In the work of [16] a template-based reuse ap-

proach to alleviate reoccurring language design problems is advocated. Tem-

plates capture these design problems and allow their instantiation. In fact, in-

stantiated templates become embedded in a language reusing them. Another

approach for reuse comprise the composition of existing language constructus as

suggested in [17] and [18]. Whereas the former approach is inspired by UML’s

package merge and particularly address the generalization of reused elements

of different packages, the latter suggests components in terms of UML to pro-

vide reuse. Their actual composition is based on coupling required and provided

interfaces related to concrete elements of the reused components. Another com-

positional approach is proposed by [19] discussing the concept of modularity

in terms of textual domain-specific languages defined by a grammar-based ap-

proach. Considering proposals relying on aspect-orientation, in [20] extension

mechanisms for EMF-based meta-models are discussed. Operators applied in

these approaches to foster reuse is in this work subsumed under the term assem-

bly. Beside the assembly, the extraction of reusable fragments is still underrep-

resented in current approaches.

Ontologies in Language Development. In [21] a domain-specific language

(DSL) development framework relying on class-based meta-concepts enriched by

description logics (DLs) using the Web Ontology Language (OWL) is proposed.

Another alternative approach to the traditional class-based development of mod-

elling languages is [22] proposing a meta-language based on a philosophical the-

ory although a reference implementation is missing. While both approaches ex-

pose insights into ontology-based meta-modelling, their focus is not on reuse.

5 Planned Evaluation

The proposed approach will be evaluated based on a three-level strategy.

Assessment of Reuse Library. To evaluate the utility of a reuse library for

business process modelling as described in Section 3 both, the technical as well

as the human viewpoint will be considered according to [23], supporting crite-

rion for each viewpoint (e.g., precision and recall or difficulty of use and trans-

parency, resp.). Regarding the human viewpoint, empirical studies based on

10

questionnaires are planned to be conducted with partners of the plugIT1 project,

proposing a model-based approach for the currently imposed practice of a tight

coupling between business and IT [24], and members of an emerging initiative

advocating ’open’ models2.

Controlled experiments with Reusable Fragments. Considering this criterion,

business informatics students are instructed to evaluate the applicability of op-

erators for extraction and assembly, and fragments extracted for the business

process modelling area. The task involves to reassemble fragmented methods

and extend assembled ones with new constructs by relying on a predefined base-

line. The exploitation of the reuse capability assumed needs to be evaluated

based on corresponding metrics [25] (e.g., ratio of reused to total size of life-

cycle constructs and properties).

Increase of Productivity and Quality. Considering this criterion, several small

development teams composed of students with similar experience are going to

realize an excerpt of a modelling method specification. One half of the teams

need to implement the specification from scratch, while the other half becomes

access to a library consisting of potential reusable method design fragments.

The evaluation is conducted based on empirical studies, investigating the pro-

ductivity and quality of reuse in modelling method development while applying

corresponding reuse metrics [25] (e.g., ratio of reused to manually implemented

’code’ or error rates, resp.).

6 Current Status and Next Steps

This research effort is still in an initial state currently addressing the elaboration

of an environment that allows experimenting with reuse in modelling method de-

velopment. While the scope is currently on structural language concerns, forth-

coming experiments need to be extended on entire method definitions.

References

1. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: EC-WEB ’02: Proceed-
ings of the Third International Conference on E-Commerce and Web Technologies,
London, UK, Springer-Verlag (2002) 182

2. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Völkel, S.: Design
Guidelines for Domain Specific Languages. In: 9th OOPSLA Workshop on Domain-
Specific Modeling (DSM’ 09). (October 2009)

3. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (December 2005) 316–344

4. Brinkkemper, S.: Method engineering: engineering of information systems devel-
opment methods and tools. Information and Software Technology 38(4) (1996)
275–280

5. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4) (2007)
36–42

1 http://www.plug-it-project.eu
2 http://www.openmodel.at

11

6. Sen, S., Moha, N., Baudry, B., Jézéquel, J.M.: Meta-model Pruning. In: 12th
International Conference on Model Driven Engineering Languages and Systems,
Berlin, Heidelberg, Springer-Verlag (2009) 32–46

7. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Mod-
els. Transactions on Aspect-Oriented Software Development I 3880 (2006) 75–105

8. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling: State of
the Art, and Research Challenges. In: Model-Based Engineering of Embedded
Real-Time Systems. Springer (2010) 59–78

9. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-
Art Review. Journal of Universal Computer Science 16(3) (2010) 424–478

10. Schauerhuber, A., Wimmer, M., Schwinger, W., Kapsammer, E., Retschitzeg-
ger, W.: Aspect-Oriented Modeling of Ubiquitous Web Applications: The as-
pectWebML Approach. In: 14th Annual IEEE International Conference and Work-
shops on the Engineering of Computer-Based Systems. (2007) 569–576

11. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What Are Ontologies, and
Why Do We Need Them? IEEE Intelligent Systems 14(1) (1999) 20–26

12. Ghosh, S., ed.: Second Workshop on Transforming and Weaving Ontologies in
Model Driven Engineering (TWOMDE 2009). Volume 6002. (2010)

13. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies: A Step to
the Semantic Integration of Modeling Languages. Model Driven Engineering Lan-
guages and Systems 4199 (2006) 528–542

14. Lucrédio, D., M. Fortes, R.P., Whittle, J.: MOOGLE: A Model Search Engine.
In: 11th International Conference on Model Driven Engineering Languages and
Systems, Berlin, Heidelberg, Springer-Verlag (2008) 296–310

15. Uschold, M., Benjamins, V.R., Ch, B., Gomez-perez, A., Guarino, N., Jasper, R.:
A framework for understanding and classifying ontology applications. In: IJCAI99
Workshop on Ontologies. (1999) 16–21

16. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: 6th
OOPSLA Workshop on Domain-Specific Modeling. (2006) 123–139

17. Blanc, X., Ramalho, F., Robin, J.: Metamodel Reuse with MOF. Model Driven
Engineering Languages and Systems 3713 (2005) 661–675

18. Weisemöller, I., Schürr, A.: Formal Definition of MOF 2.0 Metamodel Components
and Composition. In: 11th International Conference on Model Driven Engineering
Languages and Systems, Berlin, Heidelberg, Springer-Verlag (2008) 386–400

19. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: Modular Development of Textual
Domain Specific Languages. In: TOOLS (46). (2008) 297–315

20. Reina Quintero, A.M., Torres Valderrama, J.: Using Aspect-orientation Techniques
to Improve Reuse of Metamodels. Electron. Notes Theor. Comput. Sci. 163(2)
(2007) 29–43

21. Walter, T., Silva Parreiras, F., Staab, S., Ebert, J.: Joint Language and Domain
Engineering. In: ECMFA 2010. Volume 6138., Springer (2010) 321–336

22. Laarman, A., Kurtev, I.: Ontological Metamodeling with Explicit Instantiation.
In: Software Language Engineering. Volume 5969 of Lecture Notes in Computer
Science., Heidelberg, Springer Verlag (January 2010) 174–183

23. Mili, A., Mili, R., Mittermeir, R.T.: A survey of software reuse libraries. Ann.
Softw. Eng. 5 (1998) 349–414

24. Woitsch, R., Karagiannis, D., Plexousakis, D., Hinkelmann, K.: Business and IT
alignment: the IT-Socket. E & I Elektrotechnik und Informationstechnik 126
(2009) 308–321

25. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv.
28(2) (1996) 415–435

12

Rearrange: Rational Model Transformations for
Performance Adaptation

Mauro Luigi Drago

Politecnico di Milano
DeepSE Group - Dipartimento di Elettronica e Informazione

Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy
drago@elet.polimi.it

WWW home page: http://home.dei.polimi.it/drago

1 Introduction and Problem Setting

Software is now pervasive and plays an important role in everyday life. People
rely on hand-held applications, such as GPS navigation systems, to take deci-
sions. Critically safe applications, such as avionics or driving control systems,
are wide spread and neither failures nor unresponsiveness are tolerated. In the
development of such systems, assessment of non-functional properties, even in
the early stages of design, has been recognized as mandatory and useful.

In this direction, many Model Driven Engineering (MDE) approaches for
performance prediction have been developed [1][2][3]. Well established techniques
can be used to generate performance models from abstract models of systems,
to compute performance metrics, and to check whether requirements are met.
However, poor support is provided to interpret results, usually given at a low
abstraction level, and to identify appropriate solutions when requirements are
not met. It is still entirely up to the engineer and to its expertise to understand
what numbers mean and what changes to apply.

The need of feedback provision methodologies is even more compelling if
we consider that many performance problems can discovered only at run time,
when real usage information is gathered or assumptions about the environment
and users evolve. If changes occur frequently and fast, software must evolve at
the same speed and by preserving service provision. For critical applications, it
may be neither feasible nor acceptable to adapt by stopping an application, by
re-entering the software development cycle, and by waiting for a new release to
be shipped.

Software adaptation, both at design time and at run time, is however ev-
erything but easy, even in the restricted area of performance engineering. Many
research challenges are still open, especially for run time evolution [4]: changes
in the environment must be sensed and propagated across abstraction layers,
problems and solutions must be formally specified, fast reflective capabilities are
needed to consistently select and apply countermeasures.

Our research project focuses on these research issues and, more formally, on
the problem of how to close the feedback loop from a performance engineering
perspective. As the distinction between design time and run time is becoming

13

2

blurred, we believe that similar methodologies may be adopted to cope with
feedback provision in both situations. In particular, the research questions we
are tackling are three: i) how can solutions to performance problems be provided
to engineers at design time, ii) can design time techniques be useful also at
run time, iii) how can changes be applied at different abstraction layers and
propagated consistently across the modeling stack.

2 Related Work

Several methodologies are available in literature for model driven performance
evaluation at design time [1]. However, all of them fail or provide limited support
to the feedback problem. Existing approaches can be divided in two categories:
meta-heuristic approaches [5][6][7] and rule based approaches [8][9][10]. Meta-
heuristic approaches use optimization and genetic algorithms to address architec-
tural evolution. Despite being efficient in finding solutions, all these approaches
work only for specific types of evolution (e.g., selection or allocation of com-
ponents). Rule-based approaches adopt instead Event Condition Action (ECA)
rules to identify problems and propose alternative solutions, which are usually
identified by considering well known performance anti-patterns. For example,
Xu describes in [10] a rule-based approach for the PUMA framework, in which
declarative rules are implemented with the Jess language. However, solutions
are proposed by rules only for trivial performance problems and, if this is the
case, changes apply to the lowest abstraction layer without propagation along
the modeling stack.

Rule-based approaches are popular also for run time adaptation. An overview
of the various approaches and of hot research topics can be found in [4][11][12].
Of the various approaches, it is worth mentioning the foundational work on the
Rainbow project [13] by Garlan et al.: one of the first approaches recognizing
the power of abstractions for adaptation and providing an holistic solution. They
propose to reason about adaptation at the level of architectural models: probes
sense the environment and reflect changes on models, while ECA rules specify
when to adapt and how to react. More recent work can also be found in [14],
where Morin et al. use aspect oriented modeling techniques to manage adaptation
and, most notably, introduce the idea of automatically generate feedback rules
by comparing application run time and design time models. Interesting are also
recent approaches where software product lines techniques are used at run time
and viewing evolution as a variability concern [15][16].

3 Proposed Solution

Rule-based approaches represent the most adopted solution in literature but,
although ECA rule have a very well defined structure, every approach uses its
own formalism to specify them and a babel of languages exist. Furthermore,
there is still a strong separation between design time — when rules are used
to build software, to foster performance issues in design models, and to find

14

3

alternative solutions — and run time — when rules are used to automatically
modify software artifacts in response to environmental changes —. Many design
decisions taken by engineers at design time may constitute a valid basis for
run time evolution. For example, in the context of component based software,
to cope with performance issues the allocation of components may be changed
or different implementations showing better Quality of Service (QoS) can be
selected. The rationale behind these decisions must be preserved, and many
performance issues at run time can be solved by following the same decision
process used at design time.

This intuition must be indeed supported by adequate approaches and tech-
nologies; a common mechanism to specify rules suitable both for design time
evolution and for automatic run time usage is required. We believe that model
transformations absolve to this task, by being “definitions for Round-Trip Engi-
neering” [17]. Several languages exist to specify model transformations [18]: they
are currently used to support software design, and they have been already applied
for run time adaptation [19]. However, current transformation languages do not
natively support feedback and performance. Existing approaches for feedback
provision leverage model transformations only to specify solutions and reactions
in adaptation rules. The logic to identify problems, viable alternatives, and to
apply them resides outside in separate artifacts (e.g., planners, monitors, or ac-
tuators). We instead believe that this strong separation should be encompassed:
feedback and performance concepts should be promoted to first class citizens in
transformation languages in order to fully exploit their potential.

Fig. 1: Overview of the ReARRANge approach.

To close the feedback loop we propose the ReARRANge (Rational trAns-
foRmations for peRformance AdaptatioN) approach depicted in Figure 1. The
common background between design time and run time is what we call “rational
and performance aware model transformations”. They extend traditional trans-
formation languages by providing concepts to clearly identify and state alter-
native design solutions (captured by 1-to-n transformations, i.e., when multiple
output models correspond to the same input model), and to decorate them with

15

4

performance engineering concepts (e.g., how to predict non-functional proper-
ties of a solution, which non-functional attributes are impacted by a solution).
Domain engineers write transformations as usual and, at the same time, use
our additional concepts to embed expertise in performance engineering. Knowl-
edge can be then reused by end-user architects to close the feedback loop: the
state-space of solutions can be automatically explored by leveraging rational in-
formation, non-functional properties of viable alternatives can be computed by
leveraging the performance related information, and architects may eventually
be guided toward the best design solution.

This general scheme can be adopted to close the feedback loop also at run
time: architects are substituted by planners, probes detect changes, transforma-
tions implement reactions. Keeping alive models, using probes to update models
with changes in the environment, and adopting planners to reason about re-
actions is common for several approaches [4][13]. We believe this methodology
is worth and that existing solutions can be integrated into ReARRANge. In
the specific case, we intend to integrate with Kami [20]: a methodology (and
a framework) to keep alive models at run time, providing support for model-
aware probes, actuators, and for reasoning. Indeed, to integrate with adaptation
frameworks — and also with Kami — probes and actuators must be first im-
plemented. Every application domain has its own adaptation needs, and manual
implementation can be cumbersome. We believe that rational and performance
aware transformations contain all the information necessary to automatically (or
at least partially) generate probes and actuators (i.e., what to monitor and what
to change); our research will tackle also this aspect.

4 Expected Contributions

In detail, our research will provide the following scientific contributions:

– an extension to existing model transformation languages promoting perfor-
mance engineering concepts to first class citizens, and tackling knowledge
sharing about solutions to performance issues between design time and run
time. The kind of information we intend to embed into transformations con-
cerns how to evaluate the performance of candidate alternatives, which per-
formance indexes are of interest, and how to select the appropriate solutions.

– an approach to close the feedback loop at design time leveraging rational and
performance aware transformations. We intend to provide a mechanism to
explore the state-space of solutions, to evaluate the non-functional properties
of the generated alternatives, and to guide architects in decision making.

– an approach to reuse the design time rationale to perform run time evolu-
tion, with specific attention to performance issues. We intend to investigate
what kind of knowledge can be effective also at run time, how to integrate
with existing frameworks for run time evolution, and how to generate, from
rational and performance information embedded into transformations, the
artifacts (e.g., probes and actuators) necessary for run time evolution.

16

5

5 Current Status

Concerning the current status of our research, we have designed and implemented

a prototype of the transformation language at the basis of our approach, called

QVTR2 [21]. Since performance issues and adaptation may occur at different ab-

straction levels, we believe that declarative languages are the most interesting for

our goals: traceability and bi-directional capabilities can help in pushing changes

across the whole modeling stack. Indeed, QVT-Relations is the base language we

have selected for extension. The current implementation concentrates in partic-

ular on closing the feedback loop at design time, by providing constructs to: i)
identify which transformation rules specify alternatives, ii) specify which analy-

sis technique should be used to predict the QoS of the candidate model, and iii)
basic support for constraints between alternatives (i.e., exclusion and inclusion).

We have also implemented an execution engine for our language, enabling iter-

ative exploration of the various alternatives and guidance for decisions. As the

next step, we are investigating which constructs are required to support run time

evolution in QVTR2, we are adding new constructs to represent performance in-

dexes, and we are implementing more refined constraints for alternatives (e.g.,

constraints to predicate over indexes) to improve exploration of the solutions

state-space at design time and planning at run time.

6 Plan for Evaluation

Our approach tackles both design time and run time evolution; evaluation must

cover then both aspects and we concentrate on service and component based

systems, given the availability of techniques to predict non-functional proper-

ties. For the design time, we plan to compare with the rule-based frameworks

described in [10] and in [8]. The common scenario used by both approaches is

a multi-tiered web based application designed and developed with a component

based approach. Both approaches use performance anti-patterns as the starting

point to identify performance issues and to specify rules. We intend to adopt this

use case, by extending it with the model transformations necessary to automate

development and to provide evolution with ReARRANge. About the results, we

expect to show that it is possible to identify at least the anti-patterns covered

by other approaches, that we can propose adaptations also for performance is-

sues not fully-covered by existing work (i.e., anti-patterns for which solutions are

not proposed), and that engineers can be guided toward alternatives in which

anti-patterns do not occur.

For the run time evolution, the use cases adopted to show the approaches

in action are usually component based systems similar to the one mentioned

for design time evolution. With some extensions, the same use case proposed

for design time can be used to assess run time evolution capabilities of ReAR-

RANge. In particular, we plan to show that our approach can handle common

evolution patterns (e.g., re-allocation or substitution of components) and more

complex adaptation schemes (e.g., changing the structure of the persistence layer

to optimize access efficiency).

17

6

References

1. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. Software Eng. 30(5)
(2004)

2. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Per-
formance by unified model analysis (puma). In: WOSP, ACM (2005)

3. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: WOSP, ACM (2007)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software Engi-
neering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. Volume 5525
of LNCS. Springer (2009)

5. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP/SIPEW. (2010)

6. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO, ACM (2005)

7. Grunske, L.: Identifying ”good” architectural design alternatives with multi-
objective optimization strategies. In: ICSE, ACM (2006)

8. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively
identify ”guilty” performance antipatterns. In: FASE. (2010)

9. Parsons, T.: A framework for detecting performance design and deployment an-
tipatterns in component based enterprise systems. In: DSM, ACM (2005)

10. Xu, J.: Rule-based automatic software performance diagnosis and improvement.
In: WOSP, ACM (2008)

11. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: ICSE. (2008)

12. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. IEEE Computer 42
(2009)

13. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B.R., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer
37(10) (2004)

14. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming dynamically adaptive
systems using models and aspects. In: ICSE. (2009)

15. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse
of variability models at runtime: The case of smart homes. IEEE Computer 42
(2009)

16. Bencomo, N., Blair, G.S.: Using architecture models to support the generation
and operation of component-based adaptive systems. In: Software Engineering for
Self-Adaptive Systems. (2009)

17. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-
trip engineering. In: ICMT, Springer-Verlag (2008)

18. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006)

19. Vogel, T., Giese, H.: Adaptation and abstract runtime models. In: SEAMS. (2010)
20. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-

time parameter adaptation. In: ICSE. (2009)
21. Drago, M.L., Ghezzi, C., Mirandola, R.: Qvtr2 : a rational and performance-aware

extension to the relations language. In: NFPinDSML 2010, workshop at Models.
(2010) Submitted to MoDELS.

18

A Model Driven Approach to Test Evolving
Business Process based Systems

Qurat-ul-ann Farooq

Technische Universität Ilmenau

P.O. Box 10 05 65, 98684 Ilmenau, Germany

qurat-ul-ann.farooq@tu-ilmenau.de

Abstract. Testing business process based systems needs to deal with

some unique problems typically caused by dynamic nature of the sys-

tems, hierarchy of the processes and service composition. Evolution of

these systems is often rapid and can make the task of testing more com-

plex.In this paper, we present the goals of our PhD thesis and discuss a

model-driven methodology for test generation and regression test selec-

tion using BPMN 2.0 and U2TP. In our methodology, we establish the

traceability between the system models and test suites during the test

generation. Later in the case of system evolution we utilize this trace-

ability to perform the change impact analysis for the selection of affected

test cases to reduce the testing cost.

1 Introduction and Problem Statement

Mode-driven testing (MDT) is becoming widespread due to its promises of rais-

ing the level of abstraction, reuse, scalability, effort reduction, better complexity

management and easy traceability between system models and test suites [1]. In

MDT, test cases are specified using dedicated visual test specification languages

such as UML 2 Testing Profile (U2TP) [2]. Although,there is an argument about

the overhead of rework involved in visual modeling of test information. However,

studies have shown that the benefits of understanding of test suites during main-

tenance and offshore testing are far more then the initial investment in visual

specification of test suites [3]. In the environments where technological change

is rapid, specification of test suites in abstract test specification languages is

very attractive. It offers the possibility of reuse even after technological changes,

saving huge costs in preparation and re-specification of test suites.

Model-driven testing for enterprises that use business process languages to

automate their business processes has been introduced to transfer the benefits

of MDT in the enterprise system development and testing [4, 5].However, most

of the works are initial investigations in the area and lack rigorous details and

tool support. Testing the business process based systems is often difficult due

to the dynamic nature of these systems,deep hierarchy of subprocesses and ser-

vice composition [6]. Another important characteristics of enterprise systems is

rapid evolution. Enterprise systems evolve due to changes in requirements, tech-

nological advancements, organizational changes and many other factors. Besides

19

2

effective change management and version control strategies, testing the system

after the evolution is necessary to prevent the adverse affects of the changes.

Such a testing is known as regression testing. Since, executing the whole test

suite on the changed system is very expensive, a cost effective methodology is

selective regression testing. It is a process of selecting test cases corresponding

to modified parts of the system [1].

In this paper, we discuss the objectives of our PhD thesis. The goals of our

thesis work are two fold. (1)To provide a methodology and tool support for

platform independent test suite generation for testing business process based

systems. This test methodology will serve as a basis for construction of the

baseline test suites
1
. (2)To provide a platform independent regression testing

methodology to deal with business process based system evolution by utilizing

the dependencies between business process models and test models.

2 Related Work

The idea of specifying tests in an abstract test language is advocated by many

researches in web services and business process based testing. Several researchers

used TTCN for specification of test concepts in web service and business pro-

cess domain [7, 8]. Since, U2TP is a standard for visual test specification, and it

provides all the essential concepts for test modeling like specification of test ar-

chitecture, test behavior, test data and test time; hence, it is an ideal candidate

for test specification for us. There are some approaches reported in the literature

focusing on the issue of model-driven testing of service composition. Stefanescu

et.al[4] presented a choreography modeling language MCM and a model based

test generation environment. The abstract test cases are represented in TPTP

and then translated in concrete test scripts. Yuan et.al[5] transformed business

process diagram into an abstract test model. This abstract test model covers

structural aspects of test specification. This abstract model is then transformed

to TTCN3 test suites for test execution. This work is closely related to our test

case generation methodology, however this work is only an initial investigation

and does not provide transformation rules, and behavioral test case specifica-

tions. Gracia-Fanjul et.al[9] presented a test specification methodology for BPEL

based service compositions using SPIN model checker. Most of the approaches

for regression testing of business process based systems describing service com-

positions are code based [10–13]. There are a few model based regression testing

approaches for business process based applications as well. Khan et.al[14] pre-

sented their preliminary work on regression testing of web services. They used

protocol state machine to model external behavior and interactions between

different actors are modeled using UML sequence diagrams. Terhini et.al[15]

presented service composition as as a time labeled transition system. However,

lack of use of standard modeling languages, inability to model the system and

test cases at a higher level of abstraction, lack of rigorous change definitions and

1 A stable tested version of the system is known as baseline; whereas, the system after
modifications is referred to as delta version in this paper.

20

3

lack of tool support, lack of evaluation based on some fault model to see the

fault detection capabilities are major problems in these approaches and create

a motivation for further work in this area. A discussion on general model based

testing approaches can be found in Farooq et.al[1], due to lack of space we can

not discuss these approaches in this paper.

3 Proposed Solution

In this section we will discuss our model-driven test generation and regression

testing methodology that uses BPMN2.0 models for test generation and U2TP

for test specification.

<<ecore>>
BPMN2.0 Meta-model

<<ecore>>
U2TP Meta-model

PSTTrace ModelBPMN2.0
PSM

U2TP PITBPMN2U2TPTransformationBPMN2.0
PIM

<<instanceOf>><<instanceOf>>

Fig. 1. Model-driven Testing using BPMN2.0 and U2TP

Figure 1 presents our approach for model-driven business process testing.

BPMN is a standard visual business process modeling language by OMG[16].

It supports web service choreographies and web service orchestration for web

service composition to form an end to end business process model. U2TP is

also a standard by OMG for test specification [2]. We adapt the model-driven

test process presented by Dai et.al[17] for our test generation approach. For test

generation in our approach, a mapping is required between BPMN2.0 and U2TP

elements.

We are implementing this mapping using Epsilon Transformation Language

(ETL) 2. Along with U2TP test suites, a major output of this transformations is

a Trace Model to express links between source and target elements. This model

will be used later by our regression test selection approach. ETL seems to be a

suitable candidate transformation language due to its support of multiple source

and target models and its easy syntax. A trace model can also be constructed

during the ETL transformation to link source and target models. During the

test generation, we intend to focus not only on test behavior generation, but

also on test architecture and test data generation aspects to make our test cases

executable on system under test.

2 http://www.eclipse.org/gmt/epsilon/doc/etl/

21

4

3.1 Model Driven Regression Testing of Business Process based
Systems

<<ecore>>
BPMN2.0 Meta-model

Change Identification

<<ecore>>
Change Meta-model

Regression Test Selection Test Reconstruction

Trace Meta-model <<ecore>>
U2TP Meta-model

Obsolete, Reusable and Retestable Test Cases

Baseline U2TP Test SuiteTrace Model

Change Model
Delta BPMN2.0 Models

Baseline BPMN2.0 Models

<<instanceOf>><<instanceOf>><<instanceOf>><<instanceOf>> <<instanceOf>>

Fig. 2. Model-Based Regression Testing Process

We divide the model driven regression testing process into three major activ-
ities as depicted in figure 2. We discuss these activities in detail in the following
subsections.

Change Identification: The change identification activity involves many sub
activities such as model comparison and change impact analysis. Another very
interesting concept that can be useful for this activity is considering the refine-
ment patterns for evolving the system and then using these patterns for change
identification. This activity takes baseline and delta versions of BPMN2.0 mod-
els and generates a set of changes between both versions of the system depicted
as Change Model in figure 2.

Regression Test Selection: It involves selection of test cases corresponding
to modifications and then classification of these test cases. We adopt the well
known classification of Leung and White also discussed by Farooq et.al[1] for
this purpose and will classify our test suite into obsolete, reusable and re-testable
test cases. In this activity the baseline test suite is required for test selection.
As mentioned earlier, our baseline test suite consists of U2TP test models which
will be generated by adopting the test generation process depicted in figure 1.
The Trace Model generated by the transformation at the time of test generation
will be used to identify the affected test cases.

22

5

Test Reconstruction: After the changes, some test cases might need to be

modified in order to conform the changed system. In this phase the test cases

which belong to the modified parts of the system will be repaired so that they

could be executed on the new version of the system.

4 Expected Contributions

Our expected contributions from this PhD thesis are as follows:

1. Test Generation:

(a) Provision of mapping and transformations between BPMN2.0 and U2TP

constructs with traceability support.

(b) Creation of a U2TP editor to support U2TP standalone meta-model.

(c) To analyze and integrate an effective test data generation strategy and

integrating some existing test environment e.g. TTWorkbench for the

test execution, 3.

2. Traceability and Regression Testing:

(a) To discover the relationship between different PIM models and express

them as traces for effective impact analysis.

(b) Provision of a concrete model for expressing change information in the

models.

(c) Provision of a method for test suite classification considering changes in

the baseline PIM models.

3. To evaluate our methodology on an effective case study to see its fault de-

tection and test reduction capabilities.

5 Current Status and Evaluation Plans

At present, the work on this project is in its initial stages. We are working on the

mapping of BPMN2.0 models to U2PT test suites. In parallel, the development

of a U2TP editor is also under consideration. At present, none of the tools

available in the market, support U2TP modeling explicitly. We are using GMF

modeling framework 4 to build an eclipse plug in that support the standalone

U2TP meta-model and also provide the modeling capabilities.

We intend to evaluate our approach on two medium size case studies that

are under development by the MOPS (Adaptive Planning and Secure Execution

of Mobile Processes in Dynamic Scenarios) project team 5. The application of

our approach on MOPS case studies can provide us significant results regarding

reduction capabilities of our approach. For evaluating our baseline test genera-

tion strategy, we plan to perform mutation analysis to see the fault detection

effectiveness. We plan to perform empirical studies between our approach and

other relevant model based regression testing approaches discussed in related

work to see the effectiveness of our approach in comparison with other studies

in the area.

3 http://www.testingtech.com/products/ttworkbench.php
4 http://www.eclipse.org/modeling/gmp/
5 http://fusion.cs.uni-jena.de/professur/research/research-projects/mops

23

6

References

1. Farooq, Q.u.a., Iqbal, M.Z., Malik, Z., Riebisch, M.: A model-based regression test-
ing approach for evolving software systems with flexible tool support. In IEEE, ed.:
17th IEEE International Conference on Engineering of Computer-Based Systems
(ECBS), IEEE Computer Society (2010) 41–49

2. Uml, O.M.G.: 2.0 testing profile specification. Technical report, Object Manage-
ment Group, 2002

3. Baker, P., Loh, S., Weil, F.: Model-Driven engineering in a large industrial context
motorola case study. In: Model Driven Engineering Languages and Systems. (2005)
476–491

4. Stefanescu, A., Wieczorek, S., Kirshin, A.: MBT4Chor: a Model-Based testing
approach for service choreographies. In: Model Driven Architecture - Foundations
and Applications. (2009) 313–324

5. Yuan, Q.: A model driven approach toward business process test case generation.
2008 10th International Symposium on Web Site Evolution 2008 (October 2008)
41–44

6. Bruning, S., Weissleder, S., Malek, M.: A fault taxonomy for Service-Oriented
architecture. In: High Assurance Systems Engineering Symposium, 2007. HASE
’07. 10th IEEE. (2007) 367–368

7. Werner, E., Grabowski, J., Troschatz, S., Zeiss, B.: A TTCN-3-based web service
test framework. (2009)

8. Schieferdecker, I., Stepien, B.: Automated testing of XML/SOAP based web ser-
vices. In: Kommunikation in Verteilten Systemen. (2003) 4354

9. Garcia-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
BPEL compositions of web services using SPIN. In: Proceedings of the Interna-
tional Workshop on Web Services: Modeling and Testing (WS-MaTe 2006). (2006)
8394

10. Ginige, J.A., Sirinivasan, U., Ginige, A.: A mechanism for efficient management
of changes in BPEL based business processes: An algebraic methodology. In: Pro-
ceedings of the IEEE International Conference on e-Business Engineering, IEEE
Computer Society (2006) 171–178

11. Liu, H., Li, Z., Zhu, J., Tan, H.: Business process regression testing. Service-
Oriented Computing ICSOC (2007) 157–168

12. Ruth, M.E.: Concurrency in a decentralized automatic regression test selection
framework for web services. In: Proceedings of the 15th ACM Mardi Gras confer-
ence: From lightweight mash-ups to lambda grids. (2008)

13. Wang, D., Li, B., Cai, J.: Regression testing of composite service: An XBFG-
Based approach. In: IEEE Congress on Services Part II, 2008. SERVICES-2. (2008)
112119

14. Khan, T.A., Heckel, R.: A methodology for Model-Based regression testing of web
services. In: Practice And Research Techniques, Testing: Academic & Industrial
Conference on. Volume 0., Los Alamitos, CA, USA, IEEE Computer Society (2009)
123–124

15. Tarhini, A., Fouchal, H., Mansour, N.: Regression testing web services-based ap-
plications. In: Computer Systems and Applications, 2006. IEEE International
Conference on. (2006) 163170

16. OMG: BPMN 2.0 Specification. (August 2009)
17. Uml, O.M.G.: 2.0 testing profile specification. Technical report, Object Manage-

ment Group, 2002

24

A Transformational Approach for
Component-Based Distributed Architectures

Fabian Gilson

University of Namur - Faculty of Computer Science
PRECISE Research Center in Information Systems Engineering

Rue Grandgagnage 21 - B-5000 Namur - Belgium
fgi@info.fundp.ac.be

Abstract. Nowadays information systems are becoming larger, more
complex and they are frequently integrating Commercial Off-The-Shelf

components. Furthermore, stakeholders are having architecturally sig-
nificant non-functional requirements that may influence the system ar-
chitecture at early architecture design stages. As systems are intended
to cope with evolving requirements, traceability mechanisms are needed
to keep track of design decisions and resulting system architectures. In
addition, distributed systems are often deployed on heterogeneous physi-
cal infrastructures with many deployment constraints. The present work
aims at defining a transformation-oriented design method mixing ar-
chitecture and requirement models in order to define, build, abstractly
deploy and transform component-based information systems.
Keywords: component-based application - architecture description lan-

guage - model transformation - abstract deployment

1 Problem overview

With the emergence of component-based and distributed software applications,
many design languages appeared focusing on a high-level representation and on
the communication facilities between those systems. Amongst such languages,
architecture description languages (ADLs) are probably the most known. As
proposed by Bass et al, "The software architecture of a program or computing
system is the structure or structures of the system, which comprise software
components, the externally visible properties of those components, and the re-
lationships among them." [1] Furthermore, as such systems complexity, size and
requirements grow, some authors [2,3,4] stressed the need for using model trans-
formations to refine a high-level solution into more detailed ones in order to ease
the understanding of the system.

Nowadays systems are intended to evolve in order to cope with frequent
business evolutions and these changes often impact the system architecture. Cur-
rently, these evolutions are somehow documented, when actually documented,
but there is still a lack in their formalisation resulting in losses about the design
or evolution rationale traceability.

25

2

Moreover, distributed systems are often deployed on heterogeneous existing
infrastructures with many deployment constraints. Application modellers check
such constraints mostly at the end of the development process. This results some-
times in incompatibilities between the software solution and its target environ-
ment. This kind of incompatibilities could be avoided by integrating deployment
and infrastructure needs at the architecture design and checking frequently the
compatibility between the application and its infrastructure.

By reconciling both model transformations and design decisions traceabil-
ity, this thesis aims at proposing a transformation-oriented design method for
component-based information systems. Using our proposal, designers define a
system architecture in three linked layers separating the conceptual definition
of components and connectors, their implementations and the target or existing
physical infrastructure. Coupled with the architecture, modellers use a previ-
ously defined list of architecturally significant non-functional requirements in
order to define transformations that implement one-by-one these requirements.

The present document first presents existing approaches in architecture de-
scription languages, abstract deployment languages, design traceability tech-
niques and model transformation languages in Section 2. Then, we give an
overview of our proposed solution in Section 3. In Section 4, we present the
expected outcomes of this thesis. Next, in Section 5, we expose the current
achievements of our work. Last, in Section 6, we explain the evaluation method
we plan to use.

2 Related work

As information systems become more and more decentralized, modelling lan-
guages appeared in order to cope with the growing in size, complexity and
spreading. Amongst such approaches, we note the architecture description lan-
guages (ADL). In [5], the authors compared some of them and highlighted their
strengths and weaknesses. All focused languages have at least one notable lack.
For example, Darwin [6] and Rapide [7] do not offer facilities for non-functional
requirements definition. Only a few languages were developed after that compar-
ison report, such as AADL [8] and SafArchie [9]. AADL goes a step further than
other ADLs in semantics definition of components by providing facilities to spec-
ify hardware elements. Designers can also add properties on components such as
Quality of Service (QoS) properties. However, AADL constructs make models re-
ally close to the implementation, missing abstraction possibilities. In SafArchie,
components are completed with behavioural specification. Model transforma-
tions intended to cope with internal and external evolution of models can be
expressed in a dedicated transformation language. Unfortunately, expressed con-
nectors are only synchronous method calls and no QoS-related properties can be
expressed on model constructs.

Because component-based architectures involve many parties and often in-
tegrate already existing hardware, it is crucial to model the deployed artefacts
on an abstract representation of the infrastructure. Very few methods integrate

26

3

abstract deployment facilities or when existing, they have limited semantics.

Unified Modeling Language (UML) deployment diagrams [10] from the Object

Management Group (OMG) offers a basic way to deploy artefacts on physical

nodes connected by communication links. Because it has been thought generic,

the construct semantics is very poor, especially for the communication paths. The

OMG itself created another deployment standard [11] linked to the CORBA [12]

middleware. It is richer than the UML deployment diagram as it allows to de-

fine deployment plans and target hardware descriptions, but sticks too much to

CORBA concepts, making it hard to use with other component languages.

Software systems have to cope with changes in requirements as nowadays

environment is evolving rapidly [13]. Recent approaches have been specified to

formalise the design rationale and design decisions knowledge. One of the most

crucial requirements of such approaches is the binding between the software

architecture and its design choices [14,15]. An ontology of design decisions for

software intensive systems has been proposed in [16] and a tracing mechanism

has been presented in [17].

As model driven engineering (MDE) approaches became more popular and

in response to the OMG request for proposal on Query/View/Transformations

(QVT) [18], transformation languages appeared to manipulate models. The work

in [19] highlighted the main features of transformation languages and provided a

feature-based framework classifying a couple of existing approaches. Atlas Trans-

formation Language (ATL) [20] is a declarative and imperative textual language

working on Meta Object Facility (MOF)-compliant models [21]. It offers trace-

ability facilities, but transformation are only unidirectional. In [22], the authors

compared three transformation language approaches: a textual-based transfor-

mation language (ATL), an abstract syntax-based language (attribute graph

grammar, AGG) and their proposal – a concrete syntax-based graph transfor-

mation (CGT) –. With concrete syntax-based languages, developers define trans-

formations directly on models instead of working on the abstract syntax. This

eases the rules writing and increases their readability. For both graph-based lan-

guages, transformation rules are also often more concise and readable than for

textual-based approaches.

3 Proposed solution

The thesis proposes a transformation-oriented design method based on an ADL

reconciling three main challenges in distributed applications design. First, we

want to represent component-based architectures with architecturally significant

requirements and infrastructure constraints. Designers use coarse-grained com-

ponents and connectors specifications that have been highlighted by previous

tasks and draw a first architecture model. The constructs semantics are refined

by quality attributes expressing their related non-functional requirements. Con-

nectors allow communication protocol abstractions in order to cover a wider

range of connection facilities between components. Connectors are then the sup-

port for the connection (saying, for example, if we have a point-to-point or a

27

4

broadcast-like connection) and the communication protocols are defined sepa-
rately, enabling more flexibility in components composition. Parallelly to the
architecture model, the architecturally significant non-functional requirements
(ASNFR) are listed and linked to the model element in charge of implementing
that requirement.

Second, we use these ASNFRs to define, trigger and trace model transforma-
tions that fully or partially implement them. Starting from a first coarse-grained
model and the list of unimplemented ASNFRs, we want to formally transform
the model step by step. This way, each refined or extended model is linked to its
source model by a transformation, enabling tracing capabilities: where we come
from, where we go and how we do it. This traceability mechanism permits to
structure and capture the design decisions taken by software engineers during
the application design. Designers can retrieve later the reasons why the final ar-
chitecture model is as it is and can also reuse architectural knowledge for other
similar systems. Furthermore, in some cases, system evolution will be easier to
manage as system engineers can select a particular model in the transformations
graph (before the injection of a particular technology, for example) and build
the new solution from that point.

Third, the deployment environment hardware is specified by dedicated model
constructs after the first coarse-grained model. After each transformation, the
resulting architecture is validated with the infrastructure constraints in order
to identify inconsistencies or possible threats at deployment time. Using this
method, deployment related problems will be identified as soon as a model does
not conform to the target deployment environment. Corrective decisions will be
easier to take as we know exactly which design decision caused the problem.
By constantly confronting the model to its deployment infrastructure, no bad
surprise should arise when installing the resulting application onto the target
hardware.

This thesis does not address the preliminary task concerning the coarse-
grained components identification as well as the ASNFRs elicitation. This can
be done by any other method as long as we obtain a first high-level architecture
and a list of ASNFRs related to single architectural elements. Furthermore, our
approach does not focus on design alternatives exploration, but propose design
decisions traceability features.

4 Expected results

First, we will create an ADL conforming to the specification expressed in the
previous section and answering to the lacks of existing languages. We will de-
fine a metamodel of the language and precise its constructs semantics. Then, we
will create the textual and graphical concrete syntaxes. Coupled with the ADL,
we will create a simple graphical notation to summarise the ASNFRs. Second,
we will reuse, extend or create a transformation language in order to correctly
justify architecture model refinements and element substitutions or extensions.
Used with the ASNFR model, this will help to keep track of the application

28

5

design decisions path and will be used for further evolutions of the system. For
both tasks, we will use academic examples in order to validate and revise our
method with the development of a realistic, even though simple, distributed ap-
plication. Third, we will investigate the possibility to add behavioural semantics
to architectural elements semantics. We will make a survey of existing methods
and languages, and if possible, integrate one of them that answers our need.
Finally, after the definition and validation of our languages, we will create at
least a textual editor and if we did not run out of time, a graphical editor at
last.

5 Current status and achievements

At present time, we already achieved a couple of tasks. We went through existing
ADLs and stressed the important concepts and features of such languages. We
also found a few lacking properties that we find necessary when designing dis-
tributed software. Based on our observations, we built an ADL and we defined
his textual syntax with an LL-grammar. We implemented our textual syntax us-
ing an Eclipse plug-in called Xtext which is an editor and a parser-generator for
LL-grammars. This plug-in dynamically generates a configurable textual editor
as an Eclipse plug-in with, among others, syntax coloring and auto-completion.

We defined a simple graphical syntax for ASNFR models as a UML profile.
We created also a textual syntax for these models that we added to our Eclipse-
based editor. For both languages, we used academic examples to illustrate and
validate the approach.

6 Evaluation plan

Coupled with illustrative examples, we plan to make a controlled experiment in
order to validate our proposal. We will test our method on a last graduation year
student group. We will compare our method to an iterative one supported by
UML diagrams for static models and free text for tracing the design decisions.
First, the students, separated into two groups, one for each method, will be
asked to build a distributed application from scratch. Second, we will ask them
to make functional and non-functional changes in the application. Regarding
ASNFR, we will focus on QoS -related properties. We will evaluate their experi-
ences with both design methods by questionnaires to capture their feelings about
the methods. We will also compare the correctness of the built systems (before
and after the changes) regarding to functional test cases and non-functional re-
quirements. Last, we will compare the time spent by students for designing and
developing their applications.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, Second
Edition. Addison-Wesley Professional (2003)

29

6

2. Moriconi, M., Qian, X., Riemenschneider, R.A.: Correct architecture refinement.
IEEE Transactions on Software Engineering 21 (1995) 356–372

3. Bosch, J., Molin, P.: Software architecture design: Evaluation and transformation.
IEEE International Conference on the Engineering of Computer-Based Systems
(1999) 4

4. Khriss, I., Keller, R.K., Hamid, I.A.: Supporting design by pattern-based trans-
formations. In: 2nd International Workshop on Strategic Knowledge and Concept
Formation. (1999) 157–167

5. Medvidovic, N., , Taylor, R.N.: A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software Engi-
neering 26 (2000) 70–93

6. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: 5th European Software Engineering Conference. (ESEC 95),
Sitges, Spain, Springer (1995) 137–153

7. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and Analysis of System Architecture Using Rapide. IEEE Transaction
on Software Engineering 21 (1995) 336–355

8. Feller, P.H., Gluch, D.P., Hudack, J.J.: The Architecture Analysis & Design Lan-
guage (AADL) : An Introduction. (2006)

9. Barais, O.: Construire et Maîtriser l’évolution d’une architecture logicielle à base
de composants. PhD thesis, Laboratoire d’Informatique Fondamentale de Lille,
Lille, France (2005)

10. Object Management Group: Chap.10. In: OMG Unified Modeling Language (OMG
UML), Superstructure, version 2.2. Object Management Group (2009) 193–214

11. Object Management Group: Deployment and Configuration of Component-based
Distributed Applications, version 4.0. (2006)

12. Object Management Group: Common Object Request Broker Architecture
(CORBA) Specification, version 3.1. (2008)

13. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering 27 (2001) 58 –93

14. Bosch, J.: Software architecture: The next step. In: 1st European Workshop on
Software Architecture, Springer (2004) 194–199

15. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE
Software 22 (2005) 19–27

16. Krutchen, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop Software Variability. (2004) 54–61

17. Feng, Y., Huang, G., Yang, J., Mei, H.M.: Traceability between software architec-
ture models. Computer Software and Applications Conference, Annual Interna-
tional 2 (2006) 41–44

18. Object Management Group: MOF 2.0 Query/View/Transformations RFP. OMG
Document ad/2002-04-10 (revised on April 24,2002)

19. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45 (2006) 621–645

20. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Proceedings of the
Model Transformations in Practice Workshop at MoDELS 2005, Montego Bay,
Jamaica (2005)

21. Object Management Group: Meta Object Facility (MOF) Core Specification, ver-
sion 2.0. (2006)

22. Grønmo, R., Møller-Pedersen, B., Olsen, G.K.: Comparison of three model trans-
formation languages. In: 5th European Conference on Model Driven Architecture
- Foundations and Applications (ECMDA-FA 09), Springer (2009) 2–17

30

Modeling Complex Situations in Enterprise Architecture

Hyeonsook Kim

School of Computing, Thames Valley University, UK, W5 5RF
hyeonsook.kim@tvu.ac.uk

Abstract. Over the decades, Enterprise Architecture (EA) has been researched
to supply all the necessary components for enterprise system modeling
including taxonomies, meta-models, architecture development methods, and
modeling tools. Main benefits of EA are the knowledge infrastructure for
analysis and reporting by all stakeholders and the possibility of designing new
conditions in an organized manner. However, EA now faces a big challenge
with the growing dynamic of market demands and the rapid changes in business
environments, which requires agile system response and self evolutionary
behavior to support quick decision making. In technology side, there are
already matured, promising paradigms to tackle this challenges, which are
Complex Event Processing (CEP) and Context-Awareness (CA), however they
have not been integrated to EA level yet. This research proposes integration of
CEP and CA concepts into EA by replacing or extending related EA
components. Sophisticated event modeling to detect complex situations of
organization will provide the recognition and adoption of environment changes
with increased enterprise agility in more strategic and business level. Adding
semantic descriptions and annotation to event models will improve context
awareness for dynamic decision support and autonomic behavior. Case studies
will be conducted to define specific boundaries of functional and design
requirements, and application scope. Meta-model of complex situation will be
developed and evaluated before being integrated into existing EA model.
Modeling tools such as model editor and model transformer will also be
developed to facilitate the integrated EA modeling.

Keywords: Modeling complex situation, Enterprise Modeling, Enterprise
Architecture, Complex Event Processing.

1 Background and Motivation

Over the years, model-based development has gained rapidly increasing popularity
across various engineering disciplines [1]. Numerous efforts resulted in the invention
of concepts, languages, and tools for the definition, analysis, transformation, and
extension of domain-specific modeling languages as well as general-purpose
modeling language standards. For enterprise systems, Enterprise Architecture (EA)

31

2 Hyeonsook Kim

has been researched to supply all the necessary components for enterprise system
modeling including taxonomies, meta-models, architecture development methods, and
modeling tools. Main benefits of EA are the knowledge infrastructure for reporting
and analysis by all stakeholders and the possibility of designing new conditions in an
organized manner [3]. EA is not only an instrument for strategic planning of IS/IT but
also other business functions, such as compliance control, continuity planning and
risk management.

EA now faces a big challenge with the growing dynamic of market demands and
the rapid changes in business environments, which requires agile system response and
self evolutionary behaviour by quick decision making [4], [5]. Complex Event
Processing (CEP) and Context-Awareness (CA) are promising matured paradigms
which can support enterprise agility and intelligence in technology level [6].
However, these concepts have not been considered or applied in EA.

In this research, I propose to integrate CEP concepts into EA by replacing or
extending EA components. Sophisticated event modeling to detect complex situations
of enterprise will provide the recognition and adoption of environment changes with
increased enterprise agility in more strategic and business level. Adding semantic
descriptions and annotation to event models will improve context awareness for
dynamic decision support and autonomic behaviour.

Fig. 1. The scope of this research

Based on these assumptions, my research focuses on modeling business environment
changes; it is also known as event. The modeling includes developing meta-models in
conceptual level and architectural level. The models and model mappings will be
enhanced by semantic description. The created model will be linked to system
realization level such as event processing infrastructure. The model editor and model
transformation will also be implemented to support situation modeling. Figure 1
briefly shows key components related to the research field and identifies the scope of
this research.

32

Modeling Complex Situations in Enterprise Architecture 3

2 Related Works

An event is a change of state that has significance for the management of system in
the context of system architecture [7]. Inauguration of new vice president, launch of
new project, increase of sales, and a system failure are examples of enterprise events.
Most enterprise models represent the business states as conditions or effects rather
than adopting the concept of event directly. Without consideration of state changes, it
is not simple to design complicated business concerns and processes. Besides, not
only a simple event but also complex patterns of events including time, location, user,
and cost need to be considered in reality. Mapping events from distributed sources,
sharing event context with external enterprises, and mapping unknown event from
external with internal one are also important parts for enterprise event handling.

In the distributed computing area, the event processing has been actively
researched under the topic of Complex Event Processing (CEP). The system vendors
such as IBM, TIBCO and Oracle have released their own event processing platform
competitively to support complex event pattern recognition. However, they have not
provided proper modeling and method to express this process in the manner of model
driven engineering. My research will more focus on modeling of complex situation
and applying it to EA, while avoiding re-wheeling the existing event processing
platform.

2.1 Enterprise Architecture

Enterprise Architecture (EA) is comprehensive description of all of the key elements
and relationships that make up an organization [2]. In this manner, the EA which
outlines business goals and activities of an enterprise must be able to answer the
questions of changes that the enterprise is confronting with. The main objectives of
EA include not only better strategic planning but also integration between business
and IT.

With increasing interest in business-IT alignment, great efforts have been made for
EA development in industry. For instance, TOGAF [8] is one of the most popular and
outstanding EA frameworks defined by industrial vendors. The framework addresses
all the aspects of enterprise system design not only in development-led view but also
in business-led view. Business goals, business data, business activities, business
constraints, and resources are designed abstractly in the framework to produce
comprehensive guideline for enterprise system development. A few case studies [9]
are introduced to demonstrate its feasibility. However, the proposed case studies do
not provide enough use cases for complex business scenario and processes. The gap
between abstract designs and concrete components is also an open issue [4].

A number of researches have been conducted in academia as well. For example,
Deitz [10] proposes enterprise ontology in his thesis and Zhang [11] builds enterprise
taxonomies. In particular, Land [12] focuses on describing collaboration and social

33

4 Hyeonsook Kim

interaction among enterprise actors in his paper. The author uses an ontology
language, OWL-DL, to describe business activities, and the focus on transactions
between actors gives a better insight into the construction of an organization. With
this approach all transactions can be interpreted and inferred by an ontology reasoning
system. Unexpected events, exceptions and errors also can be handled with increased
intelligence. However, There is no enough consideration about IT realization model
and no enough evaluation for ontology reasoning.

2.2 Complex Event Processing

Complex Event Processing (CEP) is the analysis of event data in real-time to generate
immediate insight and to enable instant response to changing conditions – what we
call continuous intelligence [6]. Numerous efforts have been made to develop strong
event models and methods for event processing.

Paschke [15] and Vincent [16] analyze the patterns of complex events in order to
show how the existing CEP model can be fitted into business process modeling. On
the other hand, Kellner [17] demonstrates several patterns of complex event
processing discovered from case studies but the patterns are linked to design patterns
of business process for system development. In the context of system development
methodology, business process modeling is a part of enterprise system modeling in
the physical level. Therefore both of the approaches are too tightly bound by system
implementation concern rather than business concern.

Another paper written by Zang [19] insists that event processing can fit well in
enterprise information systems in terms of facilitation of event aggregation into high
level actionable information, and improved responsiveness by nature of event
response. The author implements the event processing mechanism based on RFID and
evaluated the performance with a sample application. From the proposed event meta-
model, the author tries to implement different abstraction hierarchy of space context.
However, due to the limited examples and applications, more consideration regarding
the scalability and capability of the model is required.

From another point of view, Barros [18] developed a graphical notation for
modeling complex events in business processes. Although this approach resides in
concrete level without enough abstraction, various types of event composition
patterns are identified and implemented as graphical expression. The suitability of the
proposed language is assessed by expressing common event scenarios in business
process. The most novelty of this paper is that the semantics is defined to provide a
mapping from core event models to logical expressions, and a transformation from
non-core event models into a set of core event models.

3 Research Objectives

The objective of this research is to develop a framework that extends existing EA
with complex situation modeling method in order to support better enterprise agility
and intelligence. Business concerns will be designed and expressed using situation

34

Modeling Complex Situations in Enterprise Architecture 5

model in abstraction level. The abstracted model will be gradually developed to
business architecture level and system realization level in consistent view within the
framework. The following sub goals have been formulated:

1. Study and evaluate methods for modeling complex situations of enterprise
environment. Several approaches such as ontology model and rule model will be
investigated to find the most suitable method. Case studies will be conducted to set
up specific boundaries of functional and design requirements, and application
scope.

2. Design meta-model of complex situation in conceptual level by mapping business
concerns to situation models. Meta-model of complex situation in business
architecture level will be designed as well as model transformation between
models in different levels.

3. Extend existing EA modeling language such as Archimate [14]. with the proposed
complex situation model. Several existing EA meta-models and frameworks will
be reviewed and compared to identify the most proper base architecture.

4. Add semantic description or annotation on complex situation model to improve
enterprise intelligence.

5. Implement model editor to provide graphic based modeling facilitate and model
mappings between models in different levels.

6. Validate proposals with real business cases and its application. The experiments
will enable testing the feasibility of the proposed situation model. The application
such as simulation will illustrate the benefits of the extended EA.

4 Current Status and Future Works

This research is still in early stage as it was began in 2010. As an initial step, case
study is being progressed in order to gather sample business scenarios and data which
can identify specific design issues and functional requirements for enterprise complex
situation modeling. Sample business scenarios will be implemented using existing EA
modeling language such as Archimate. This work will identify specific shortages in
expressing complex situation and semantic information. The recognized problems
will be good sources to design a new model to extend EA. Further detailed literature
review will be also essential.

References

1. Schmidt, D. C., Model-driven engineering. Computer, 39 (2), p.25-31 (2006)
2. Fox, M. & Gruninger, M., Enterprise Modeling. Artificial Intelligence Magazine,

19 (3). (1998)
3. Lankhorst, M., Enterprise architecture at work - Modelling, communication and

analysis. Springer-Verlag, Heilderberg (2005)

35

6 Hyeonsook Kim

4. Sinderen, V. & Marten, Challenges and solutions in enterprise computing, Enterp.
Inf. Syst. Proceedings of the 11th International IEEE EDOC Conference (EDOC)
p.341 – 346 (2008)

5. Kim, T.-Y., Lee, S., Kim, K. & Kim, C.-H., A modeling framework for agile and
interoperable virtual enterprises. Comput. Ind., 57 (3), p.204-217 (2006)

6. Luckham, D., The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. In (eds.). Rule Representation,
Interchange and Reasoning on the Web (2008)

7. Michelson, B., Event-Driven Architecture Overview. Patricia Seybold Group
(2006)

8. The Open Group Architecture Framework (TOGAF) version 9. Van Haren
Publishing (2009)

9. Buckl, S., Ernst, A. M., Matthes, F., Ren, Ramacher & Schweda, C. M., Using
Enterprise Architecture Management Patterns to Complement TOGAF. In (eds.).
Proceedings of the 2009 IEEE International Enterprise Distributed Object
Computing Conference (2009)

10. Dietz, J. L. G., Enterprise Ontology: Theory and Methodology. Springer-Verlag
New York, Inc. (2006)

11. Zhang, L., Li, T., Liu, S. & Pan, Y., An integrated system for building enterprise
taxonomies. Inf. Retr., 10 (4-5), p.365-391 (2007)

12. Land, M. O. T. & Dietz, J. L. G., Enterprise ontology based splitting and
contracting of organizations. In (eds.). Proceedings of the ACM symposium on
Applied computing. Fortaleza, Ceara, Brazil, ACM. (2008)

13. IDS (Intelligent Decision Support) Special Interesting Group,
http://samsa.tvu.ac.uk/ids/blog/ , accessed Jun-2010.

14. Lankhorst, M.M., Proper, H.A., Jonkers, H., The Anatomy of the ArchiMate
Language, International Journal of Information Systems Modeling and Design
(IJISMD), Vol. 1, Nr. 1 IGI Publishing (2010)

15. Paschke, A. & Ammon, R., Domain-specific Reference Models, Architectures and
Patterns for CEP. In (eds.). EuroPLoP - CEP Focus Group. Irsee, Germany (2008)

16. Vincent, P., How does CEP fit into BPM and SOA environments? TIBCO,
Complex Event Processing. (2010)

17. Kellner, I. & Fiege, L., Viewpoints in complex event processing: industrial
experience report. In (eds.). Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems. Nashville, Tennessee, ACM.
(2009)

18. Barros, A., Decker, G. & Grosskopf, A., Complex Events in Business Processes.
In (eds.). Business Information Systems. Lecture Notes in Computer Science
(2007)

19. Zang, C. & Fan, Y., Complex event processing in enterprise information systems
based on RFID. Enterp. Inf. Syst., 1 (1), p.3-23 (2007)

36

Reference Modeling
for Inter-organizational Systems

Dieter Mayrhofer

Institute of Software Technology and Interactive Systems

Vienna University of Technology, Austria

mayrhofer@big.tuwien.ac.at

Abstract. Inter-organizational business process models are created and

used by different partner networks. Often, those models are similar but

differ in certain business needs. Due to the lack of methods and tools,

companies are required to start from scratch to create their specific mod-

els instead of taking advantage of and re-using already existing models.

Therefore, we first analyze reference modeling design techniques and

their applicability on inter-organizational models and second create a

prototype implementation of inter-organizational reference modeling. By

creating models out of reference models we expect to gain efficiency in the

modeling process and a higher quality of inter-organizational solutions.

1 Introduction and Motivation

Nowadays, the use of business models and business process models often con-

centrates on intra-organizational systems. However, companies also take part in

inter-organizational systems, but they are mostly limited to their implementa-

tion such as Web Services by following a bottom-up approach. To overcome these

limitations, we developed a model-driven approach towards inter-organizational

systems named Business Semantics on top of Process Technology (BSopt).

Fig. 1. Layers in inter-organizational systems

The BSopt approach [1] builds upon three layers, as shown in Figure 1. The

first layer, the value perspective, captures the rational as well as the economic

resources being exchanged with business partners. To model these aspects, we use

two well established business modeling languages, e3-value [2] and the Resource-
Event-Agent ontology (REA) [3], which will be explained later.

37

The second layer, the process flow perspective, is partly derived from the first
layer and uses business process models. It describes the flow of business activities
and their dependencies in accordance with the business goals to be reached. For
this purpose we use UN/CEFACT’s Modeling Methodology (UMM) [4]. Another
important part of this layer are the messages being exchanged between the busi-
ness partners. To describe these messages we use Core Components, which define
messages on a conceptual level. In order to get a deployable system, the models
defined on the second layer are translated into deployable artifacts covered by
the IT layer (the execution perspective). The IT layer implements the business
processes by means of tools, frameworks, API’s, Web Services, etc. In BSopt, the
deployable artifacts covered and generated out of the business process models of
the second layer are the Business Process Execution Language (BPEL) and the
Web Services Definition Language (WSDL). We developed a tool for BSopt that
provides a sophisticated solution to create inter-organizational systems based on
models. It allows the user with the help of wizards to model the top two layers
mentioned before and generate the artifacts for deployment.

Although the BSopt tool proved to seamlessly create inter-organizational
systems, we encountered the following problem concerning the re-use of models
during evaluation: If a company wants to use existing business and business
process models and wants to change them slightly, it generally has to reinvent
the wheel and start again from scratch.

Therefore, we propose the following solution: Using various design techniques
from reference modeling on the inter-organizational models will foster the re-use
of models. Due to less recreation of already existing models which only need to be
slightly changed, we expect faster model creation time as well as better quality of
models by incorporating best practice into reference models. We anticipate that
the design techniques can generally be applied on a variety of model languages.

The remainder of this paper is structured as follows: Section 2 briefly dis-
cusses the models considered for reference modeling and the design techniques
in question. Additionally, we introduce existing work in the field. In Section 3
we define the contributions concerning re-using business models and business
process models. Section 4 describes the research methods being used in order to
create reference models and a prototype implementation. In Section 5 we con-
clude the paper by showing the advantages we expect from reference modeling
used on the inter-organizational models.

2 Background and Related Work

In this section we elaborate on the models used in BSopt and on the design
techniques of reference modeling. These two areas will serve as the base of the
thesis. At the end of the section we discuss additional related work.

Inter-organizational models. The Inter-organizational models are imple-
mented using Domain Specific Languages (DSL). Thereby, e3-value describes a
business model as a value web where multiple actors exchange objects of eco-
nomic values such as money, goods, or services. Next, REA was originally in-

38

troduced by McCarthy [3] as an accounting model and extended to an ontology

by Geerts and McCarthy [5]. In contrast to e3-value, REA captures the bilat-

eral agreements and commitments between exactly two agents. REA stands for

the three main concepts Resource, Event, and Agent. After the business mod-

els are defined, business process models based on UMM can be partly derived

to realize the value exchange. UMM allows to create a business process model

from an observer’s perspective in order to depict inter-organizational processes.

It builds upon three views: the business requirements view capturing the re-

quirements already gathered from the REA and e3-value models, the business

choreography view defining the business transactions between partners, and the

business information view responsible for the messages being exchanged. UMM
does not require a certain standard for messages. The BSopt project makes use of

UN/CEFACT’s Core Components Technical Specification (CCTS) [6] for defin-

ing business documents on a conceptual level using a DSL implementation [7].

Once all the models are created, deployment artifacts can be created on the IT

layer to be used by the process or workflow engines.

Design Techniques. Reference modeling is mainly driven by the German

Information Systems community and has primarily focused on internal business

processes [8–10] . The main idea enables faster creation of models by re-using

existing ones as well as delivering higher quality models. Vom Brocke [10] intro-

duces five design techniques for reference modeling (cf. Figure 2). Configuration
allows to configure a model out of a superset of elements of a core model. In-
stantiation provides a framework of a model with placeholders for parts yet to

be defined. These placeholders can then be further specified by plugging in mod-

els with specific characteristics. Specialization relaxes re-use by allowing to take

over a complete general model and changing it by adding or changing arbitrary

elements. Aggregation allows to combine multiple existing reference models to

compose a new complete model. Finally, Analogy serves as an orientation for the

creation of a new model.

Analogy An original model “A” serves as a means of orientation
for the construction of a resulting model “a”. The relation
between the models is based on a perceived similarity of

both models regarding a certain aspect.

The application domain can be described by certain
patterns recurring in each application; the entire solution,
however, has to be replenished in an indefinite manner. by

creativity

Configuration The technique of configuration is characterised by
deriving a configured model c out of a configurative
model C by means of making choices from a greater

variety of alternatives offered in C.

The application domain can be described fully in design
time including all relevant adaptations that have to be

considered in various applications.by
selection

Aggregation
The combination of one or more original models “p” that
build “a” resulting model “T”, with the models “p” forming

complete parts of “T”.

The application domain can be described partly; each
part can fully be specified whereas their combination for
replenishing the entire coverage of an application cannot

be foreseen when building the reference model.
by

combination

SituationDefinition

Instantiation The creation of a resulting model “I” by integrating one or
multiple original models “e” into generic place holders of

the original model “G”. The model “I” incorporates the
integrated construction results of “e” in “G”.

The application domain can be covered by a general
framework; this framework however, has to be adapted

in regard to selected aspects that can not fully be
described while building the reference model.

by
embedding

Derivation of a resulting model “S” from a general model
“G”. That way, all statements in “G” are taken over in “S”

and can either be changed or extended (but generally
not deleted).

The application domain can be covered by a core
solution; but this solution has to be extended and

modified (without deleting) in an indefinite manner for
various applications.

Specialization

by
revising

Fig. 2. Design Techniques of Reference Modeling according to [10] and [11]

39

These design techniques are specified on a general methodological level, in-

dependent of special modeling languages. So far, vom Brocke [10] has applied

the design techniques to Entity-Relationship-Diagrams and Event-driven Process
Chains (EPCs). By incorporating the design techniques into inter-organizational

models we foster re-use of these models. Hofreiter et al. [11] have already detected

an appropriate example for each of the design techniques to be used with UMM,

but thorough analysis of further re-use possibilities have to be conducted. We

have already analyzed first steps towards inter-organizational reference models

in [12]. The contributions of this thesis are discussed in the next section.

3 Research Contributions

In our BSopt project various modeling languages (i.e., e3-value, REA, UMM,

and Core Components) were used to create an inter-organizational system. These

languages include structural and behavioral models, respectively. During the

evaluation of these modeling languages we identified a lack of re-use of existing

models - except for copying & pasting parts of existing models. Thus, if two

business partners want to create a model which is similar to an existing one,

they basically have to start from scratch to create a new model and are not

able to take advantages of existing ones. To enable and foster re-use of inter-

organizational models, we define following research contributions of this thesis.

Inter-organizational Reference Models. The first research contribution

addresses the definition of reference models for inter-organizational systems. We

will consider the well elaborated modeling languages used in BSopt : e3-value,
REA, UMM, and Core Components. In order to create reference models we have

to identify the potential for re-use of the various original models. Therefore, sets

of existing similar models have to be analyzed. Model instances are compared to

each other and variating elements are identified. Additionally, we have to find

the proper design techniques (i.e., Analogy, Aggregation, Specialization, Instanti-
ation, or Configuration) for these variations in order to create the corresponding

reference model which can be used as a basis to create new models.

Metamodel for Reference Models. The second research contribution

concerns the creation of an appropriate metamodel for the reference models

by extending the BSopt modeling languages. The metamodel has to cover all

elements of the models as well as of the reference models (e.g. an additional

element for a placeholder in a reference model, which will be further defined in the

derived model). First, we have to study the existing metamodels and second, we

have to identify locations in the metamodel to allow for placeholders/extension

points for the variating elements on the model level. Furthermore, we have to

include those extensions in the metamodel allowing for creation of models as

well as of reference models for the various modeling languages.

Change Patterns. The third research question deals with identifying the

change patterns to derive a model from a reference model. According to the

design technique of reference modeling, special points of extensions for the ref-

erence model will be enabled for the modeler. The change patterns have to be

40

specified on a meaningful level of abstraction covering a set of changes on sin-

gle nodes and edges. To help the modeler to create the model instances, wizards

conforming to the change patterns will be created to guide the modeler and keep

him from the modeling details. Additionally, traces between the newly created

model and the reference model have to be kept. This will allow future changes of

the reference model to be propagated to the derived models and is a prerequisite

for proper model evolution.

These research contributions allow us to create reference models as well as

provide them to modelers in order to create model instances. We expect a more

efficient modeling process since the modeler does not have to start from scratch

and a higher quality of the models by building upon best practice.

4 Research Methods

In this thesis we follow a Design Science approach [13], which is commonly used

in the discipline of information systems (IS). As the area of IS research is at the

”intersection” of people, organizations, and technology, Design Science is not

only about designing, but also observing and validating ”implemented” changes.

Design Science identifies design processes (i.e., build and evaluate) and design

artifacts. The latter are constructs (e.g., specific vocabularies and symbols), mod-

els, methods, and instantiations (e.g., prototype systems). These artifacts enable

researchers to understand and to address the problems in developing, implement-

ing, and validating information systems. The following phases are conducted.

Literature Study Right now we study related work in the area of reference

modeling and design techniques to identify existing work. Additionally, we will

evaluate existing tools in this area with a focus on the five design techniques.

Furthermore, we also consider re-use concepts from software engineering, which

reference modeling is related to.

Identifying Re-use of Models Once we have studied the different de-

sign techniques we will analyze the models used in BSopt (i.e., e3-value, REA,
UMM, and Core Components) for their suitability for reference modeling. Thus,

similarities in a set of likewise models have to be detected.

Defining Reference Models and Change Patterns After we detected

the variating model elements, proper extension points/placeholders in models

have to be defined. The existing metamodels have to be extended to allow for

these extension points/placeholders. Additionally, change patterns describing the

transformation from a reference model to a model instance have to be defined.

Prototype Implementation This phase will use the reference models from

the previous phase and implement a prototype using domain-specific languages.

The prototype will be built upon our existing BSopt tool, which already proved

to be consistent.

Prototype Evaluation To validate our assumptions we will evaluate the ref-

erence modeling tool. Therefore, the evaluation builds upon three major pillars:

Experiments with students building models from scratch and students building

models using our reference modeling approach; Case Study with an appropriate

41

company including questionnaire as well as face-to-face interviews; Collaborative
studies in workshops with experts of the used models.

5 Conclusion

The goal of this thesis is to provide reference modeling for inter-organizational
systems. Thus, the five design techniques from reference modeling Configuration,
Instantiation, Specification, Aggregation, and Analogy are incorporated on the
models used in the BSopt methodology. This requires the extension of the ex-
isting metamodels to provide further to be specified placeholders in the models.
Additionally, change patterns have to be defined to transform a reference model
to a model utilizing wizards. The prototype implementation for BSopt reference
modeling is expected to lower the complexity and fasten the process of modeling
inter-organizational systems as well as to provide higher quality models.

References

1. Huemer, C., Liegl, P., Schuster, R., Werthner, H., Zapletal, M.: Inter-
Organizational Systems: From Business Values over Business Processes to De-
ployment. In: Proceedings of the 2nd International IEEE Conference on Digital
Ecosystems and Technologies, IEEE Computer Society (2008) 294–299

2. Gordijn, J., Akkermans, H.: Designing and Evaluating e-Business Models. IEEE
Intelligent Systems - Intelligent e-Business 16(4) (2001) 11–17

3. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Env. The Accounting Review 57(3) (1982)

4. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM), UMM Meta
Model - FoundationModule. (October 2009) Implementation Verification Draft 2.0.

5. Geerts, G.L., McCarthy, W.E.: An Accounting Object Infrastructure for
Knowledge-Based Enterprise Models. IEEE Intelligent Systems 14(4) (1999) 89–94

6. UN/CEFACT : Core Components Technical Specification 3.0. (November 2009)
7. Liegl, P., Mayrhofer, D.: A Domain Specific Language for UN/CEFACT’s Core

Components. In: Proceedings of the 5th World Congress on Services, IEEE Com-
puter Society (2009) 123–131 SC4B2B, Bangalore.

8. Fettke, P., Loos, P.: Perspectives on Reference Modeling. In Fettke, P., Loos, P.,
eds.: Reference Modeling for Business Systems Analysis. Idea (2007) 1–20

9. Thomas, O.: Understanding the Term Reference Model in Information System
Research. In: Business Process Management (2005) Workshops, Revised Selected
Papers, Springer LNCS (2005) 16–29

10. vom Brocke, J.: Design Principles for Reference Modeling - Reusing Information
Models by Means of Aggregation, Specialisation, Instantiation, and Analogy. In:
Reference Modeling for Business Systems Analysis. Idea (2007) 47–76

11. Hofreiter, B., vom Brocke, J.: On the Contribution of Reference Modeling to e-
Business Standardization How to Apply Design Techniques of Reference Modeling
to UMM. In: BPM Workshops, Springer LNBIP (2009) 671–682

12. Hofreiter, B., Huemer, C., Kappel, G., Mayrhofer, D., vom Brocke, J.: Inter-
organizational Reference Modeling - A Position Statement. In: International Work-
shop on Business System Management and Engineering, Tools conference. (2010)

13. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information
Systems Research. MIS Quarterly 28(1) (2004) 75–105

42

!""#$%&'(!)*+%,-*,.)-(/01-#%&'(/-,+010#0'$(,0(,+-(
2343#(5.&6+%"(708,93)-(738-,$(:0;3%&(

!
"#$%!&'($)*!

!
+,!-*(*.!/#012)*34*1$!,56##.!

7!+8'($)0'1%!9')5.$!
:#81$)$%;!9*.'<#)8'*;!+,=!

>)'($)*?8@0A$34!

!<6,)3*,=! B8! 16'0! @*@$)! C$! 3$05)'D$! 16$!)$04.10! #<! *!)0*)56! @)#>$51! 16*1!
'8(#.($3!0#.('82!16$!@)#D.$E!#<!$(*.4*1'82!@#1$81'*.!56*82$0!1#!*!8*(*.!24806'@!
0%01$E!*)56'1$514)$A!!F6$!@)#1#1%@$!0#<1C*)$!3$($.#@$3!<#)!16'0!3#E*'8!0#.41'#8!

$G1$830! 16$! :#81$)$%! /6#$8'G! H:/I! 0#<1C*)$! *)56'1$514)$!
<#)E*.! 0@$5'<'5*1'#8! <)*E$C#)J! D%! 5)$*1'82! *8! *D01)*51! .*%$)! #<! E*5)#!
5#EE*830!16*1!*)$!3$0'28$3!<#)!*00$)1'#8!56$5J'82A!!F6$!K*2.$L!0#.41'#8!40$0!
00$)1'#8!56$5J'82!1#!1$01!<#)!0#<1C)$!01*1$0!16*1!*)$!5#80'3$)$3!480*<$A!!!

>-$90)16?(,#<1C*)$! ,%01$E! =)56'1$514)$;! :#3$.'82;! K8(')#8E$81*.!
:#3$.'82;!=00$)1'#8!96$5J'82!

@(A)0<#-;(

-*(*.!M4806'@!0#<1C*)$!0%01$E!*)56'1$514)$!)$N4')$0!5#80'3$)*1'#8!<#)!.#00!#<!.'<$!OLPA!!
F6$!+,!-*(%Q0!,#<1C*)$!,%01$E!,*<$1%!F$568'5*.!&$('$C!/*8$.!H,,,F&/I!$(*.4*1$0!
@#1$81'*.! 0#<1C*)$! 0%01$E0! <#)! +,! -*(%! M4806'@0! 34)'82! 16$! '8'1'*.! *5N4'0'1'#8!
@)#5$00A! !F6$!,,,F&/!#)2*8'R*1'#8! 6*0! '3$81'<'$3! *8! 48*55$@1*D.$!)*1$! #<! 0#<1C*)$!
5N4'0'1'#8!$(.4*1'#8!<*'.4)$0!34$!1#!'004$0!)$.*1$3!1#! 0#<1C*)$!0*<$1%!OSPA((F6$!6'26!
<*'.4)$!)*1$!)$04.10! '8! 16$!($83#)!D$'82!)$N4')$3! 1#! 04DE'1! *33'1'#8*.! 3#54E$81*1'#8!
*83! *8! *5N4'0'1'#8! @)#5$00! H*83! 1'E$.'8$I! 16*1! '0! 48*55$@1*D.$! 1#! 16$! +,! -*(%!
=5N4'0'1'#8!5#EE48'1%A!

B(C-#3,-1(D0)E6(

T$($ '0! 16$! <#483*1'#8! <#)!483$)01*83'82! 16$!)'0J0!#<!
@##)! 0#<1C*)$! $82'8$$)'82! O7UPA! ! V4$! 1#! 16$! 0$)'#408$00! #<! 16$! @#1$81'*.!)'0J0;! 16$!
,,,F&/!)$N4')$0! $G6*401'($! 1$01'82! D$<#)$! E#3'<'5*1'#80! *)$! *@@)#($3A! ! "*5J0#8Q0!
E*..!,5#@$!W OXP!OYP!*)24$0!16*1!*!6'26!@)#@#)1'#8!#<!D420!5*8!D$!<#483!

D%! 1$01'82! 16$! 0%01$E! C'16'8! 0#E$! 0E*..! 05#@$A! ! 9#8($81'#8*.! 8#1*1'#80;! 0456! *0!
+:T;! 6*($! .#82! D$$8! 16$! @)$<$))$3! 1##.! #<! 0#<1C*)$! *)56'1$510;! D41! 16$! 0#<1C*)$!
*)56'1$51! 8$$30! *! 84ED$)! #<! 3'<<$)$81! ('$C0! #<! 16$! 0#<1C*)$! *)56'1$514)$! <#)! 16$!
(*)'#40! 40$0! *83! 40$)0! OZP! O[PA! ! =)56'1$514)$! E#3$.'82! @)#('3$0! *! 6'26\.$($.!
*D01)*51'#8!<#)!)$@)$0$81'82!01)4514)$;!D$6*('#);!*83!J$%!@)#@$)1'$0!#<!*!0#<1C*)$!0%0\

43

!"#$%&'$%(')$$*+","$-.,!/-0!123,$-/"$4,"546$13$7",0/1.138$02#96":$9/2.6"#,$!2$;-/124,$
,!-<"+267"/,$ 13$-3$437"/,!-37-.6"$#-33"/)$ $*+"$4,"25 !+"$=23!"/">$?+2"31:$ @=?A$
#"!+272628>$%B'$"3-.6",$,25!C-/"$-/0+1!"0!,$!2$#27"6$ $"3;1/23#"3!,$13$,40+$
-$C->$!+-!$ "3-.6",$!+"$ 323D!"0+310-6$,!-<"+267"/$!2$ 437"/,!-37$!+"$92!"3!1-6$ "55"0!,$
C+"3$#-<138$0+-38",$!2$!+"1/$"3;1/23#"3!)$$$

!"#$%&%'()"*%+,-.%/0" *1'-(2"3$45.-(4-,$("6%)(+./7"6(-5%)%+%71"
8%$"9:;:+"<,/'5.&"*%8-=:$("

#"!+272628>$!2$!",!$,25!C-/"$"3813""/138$-/0+1!"0!4/"$ %B')$ $E"0-4,"$=?$1,$.-,"7$23$
F2/#-6$="!+27,G$H-86"I$1,$0-9-.6"$25$8"3"/-!138$-66$92,,1.6"$,0"3-/12,$C1!+13$,029"G$
-37$!+"3$";-64-!",$!+"$,0"3-/12,$52/$-,,"/!123$;126-!123,)$$H-86"I$#27"6,$9/2;17"$+18+D
6";"6$ -.,!/-0!123,$ 52/$ /"9/","3!138$!+"$,!/40!4/"G$."+-;12/G$ -37$ <">$ 9/29"/!1",$ 25$
,25!C-/"$,>,!"#$/"6-!1;"$!2$+2C$!+"$,25!C-/"$,>,!"#$ 13!"/-0!,$C1!+$ 1!,$"3;1/23#"3!)$$
=?$ #27"6,$ 4,"$ ";"3!,$!2$ 7",0/1."$ +2C$,>,!"#$ 02#923"3!,$ 13!"/-0!$ C1!+$!+"1/$
"3;1/23#"3!)$ $ H;"3!,$ 023!-13$ J!!/1.4!",$!+-!$ "3-.6"$!+"$ #27"6"/$!2$ 54/!+"/$ /"513"$
#27"6$/"9/","3!-!123$25$,>,!"#$."+-;12/)$$J!!/1.4!",$-/"$9-/!1046-/6>$;-64-.6"$-,$!+">$
/"9/","3!$ -$ #2/"$ 7"!-16"7$ @-37$ #"-,4/-.6"A$ -99610-!123$,!-!"G$!+"/".>$ "3-.6138$!+"$
";-64-!123$25$ 52/#-6$-,,"/!123,)$ $*+1,$9-9"/$7"#23,!/-!",$+2C$H-86"I$ 1,$-.6"$!2$!",!$
!+"$ +18+D6";"6$ /"6-!123,+19,$."!C""3$ 843,+19$,>,!"#,G$ C+16"$ 023!134138$!2$,4992/!$
#27"6$/"513"#"3!$!2$/"56"0!$-$#2/"$7"!-16"7$@-37$";26;138A$,>,!"#$;1"C)$

!>?"3''($-.%/"@5(4A./7"

H-86"I$9/20",,",$!+"$=?$#27"6$-37$8"3"/-!",$-66$92,,1.6"$,0"3-/12,$C1!+13$!+"$#27"6$
,029")$ $H-86"I$4,",-3":+-4,!1;"$,"-/0+$52/$-,,"/!123$;126-!123,G-37!+"3$/"!4/3,$-$
61,!25-,,"/!123$0243!"/$":-#96",)$
*+"$."62C$=?$#27"6$ /"9/","3!,$!+"$ 9/20",,$!+"$K43$L23,26"$L2#94!"/$ @KLLA$

":"04!",$!2$!/-0<$!-/8"!$7-!-)$$*+"$KLLM-0!1;1!>$,"!,$!-/8"!$1352-37,!-/!,$,"37138$!+"$
!/-0<138$7-!-$!2$!+"$L2##-37-37N"01,123$ @LNA$,>,!"#)$ $ *+"KLL-6,2$ /"O4",!,$
#2/"$1352$5/2#$!+"$PN$Q-7-/$@QPNA)$$R5$-3>$25$!+","$";"3!,$5-16G$!+"$";"3!$!/-0"$#->$
"37$13$!+"KLL."138$43-.6"$!2$!/-0<$!+"$!-/8"!S$
$

!"#$%&'()*+",*-,./+",01)2/3+&4256527'
!""#$%&&'()*+,+*-.$/0123456378937:;$$%&&'<=*#(>?=*$1@AB$$
%&&'<=*#(>?=*.$0&C'>=DE=<*'%&&'<=*#(>?=*$
0%&&'*(>?=*FG*H=*I237J;0%&&'>=DE=<*'!KC'<=*#(>?=*$
%&&'L(+*'!KC'<=*#(>?=*0
0!KC'*(>?=*FG*H=*$%&&'*(>?=*FG*H=*@I$$
237JM;$0!KC'*(>?=*H=*$%&&'*(>?=*H=*@@@@@B$

$

44

!"#$#%"&'()*(+(,&"-./-/.(01/(45(+(6-./-/.(01/(7289:(+(2;"9/89-"<$<%=%#>3(?(
@A==(/B9=$&$#%"&("@(CD(&"#$#%"&(;$&(</(@"A&.($#(EEEF0$G=/HF;"IF(

(

(
(
J%GA-/(K(-/9-/2/(#E"(2#/92("@($&(0$G=/H(9-";/22F((LM/(N;/&$-%"(J%=#/-($=="E2(@"-(
I$;-"(;"II$&.2(#"(</(-A&(G%&2#(#M/(I"./=(%&("-./-(#"(-/#A-&($==(2;/&$-%"2(#M$#(I//#(
OA/->(;"&.%#%"&2F((LM/(2/;"&.(%2($(2;/&$-%"(#M$#(E$2(-/#A-&/.(@-"I(#M/(9-/;/.%&G(
I$;-"(;"II$&.F((
C$;-"(;"II$&.2(;$&(</(/B/;A#/.(%&(#M-//(9-/./@%&/.(@"-I$#2($2(%&.%1%.A$=("-(

;"I<%&/.("9/-$#%"&2'((
 01/&#P"AƑ/&#L>9/Q(69/-$#"-Q(R$=A/5(S(A2/.(#"(-/#A-&("&=>(
2;/&$-%"2(#M$#(M$1/($(I%&8I$B(&AI</-("@(29/;%@%;(/1/F(

 C$BN=%;/NAI4?##-%<A#/!$I/Q(69/-$#"-Q(R$=A/5(S(A2/.(#"(-/#A-&(
"&=>(2;/&$-%"2(#M$#(M$1/($(I%&8I$B(&AI</-("@(9$-$==/=(/1/F(

 CBPM%&NAI4?##-%<A#/!$I/Q(69/-$#"-Q(R$=A/5(S(A2/.(#"(-/#A-&(
"&=>(2;/&$-%"2(#M$#(M$1/($(I%&8I$B(&AI</-("@(/1/(#M$#(M$99/&(%&(
2/OA/&;/(E%#M%&(#M/(2;/&$-%"F(

(
01/&#(G-II-(-A=/2(29/;%@>($(2/#("@(9"22%<=/(/1/&#(#-$;/2(-/9-/2/&#%&G(.%@@/-/&#(

2;/&$-%"2(@"-(#M/(TPPU$;#%1%#>F((!"#/(#M/(VWV(V6-V(/1/&#(G-II-($=="E2(#M/(I"./=/-(
#"(#/2#(@"-(2;/&$-%"2(EM/-/(#M/(TPPU?;#%1%#>(/1/&#(/&./.(%&(#M/(#$-G/#(&"#(</%&G(2/#F((
LM%2(;9<%=%#>(E$2(9$-#%;A=$-=>(M/=9@A=(EM/&(#/2#%&G(#M/(.$#$(#-$&2@/-(-/OA%-/I/(
E%#M%&(#M/(GA&2M%9(2>2#/IF(

!"#$%&'()*$+,'-.-/)0-&1$&.$2&3,*$4'&5,'0-,6(

LM/(NNNLXD(/1$=A$#%"&(9-";/22(-/OA%-/2($(@"-I$=(1/-%@%;$#%"&(9-";/22(#M$#(/1$=A$#/2(
$==(9"22%<=/(2;/&$-%"2(E%#M%&(#M/(I"./=(2;"9/F(0$G=/H(%2($<=/(#"(G/&/-$#/($==(9"22%<=/(
2;/&$-%"2(E%#M%&(2;"9/(EM%=/(2%IA=#$&/"A2=>(/1$=A$#%&G(#M/(I"./=(@"-($22/-#%"&(
1%"=$#%"&2F((Y&(#M/(</="E(/B$I9=/(E/(;"&2%./-/.($&(A&2$@/(2#$#/(#"(</($&>(2;/&$-%"(
EM/-/(#M/(P"II$&.($&.(Z/;%2%"&(4PZ5(2>2#/I(2/&.2($&(69/&J%-/(;"II$&.Q($&.(#M/(
&AI</-("@(I$&A$=($99-"1$=2(-/OA%-/.(#"(/B/;A#/(#M/(;"II$&.(%2(:+(['((

45

!

46

!"#$%&'(&)"*+,(-./0(.+,1"

!"#$%&"'(")*+(,-#$&%* * !#-./-)$"0* -* 0/"1,$2* 131)('* %(4/$%(1*),(* -5$.$)3*)&*'&6(.*
),(*131)('*-"6*$)1*("#$%&"'(")7**8&%'-..3*)(1)$"0*-*131)('91*:/";)$&"-.*2%&:$.(*<,$.(*
$")%&6/;$"0* (=)(%"-.* 5(,-#$&%-.* (#(")1* $1* >(3*)&* /"6(%1)-"6$"0*,&<*),(* 131)('*<$..*
%(-;)*$"*-*;&'5-)*1$)/-)$&"7**?,(*@@@?AB*,-1*),(*;-2-5$.$)3*)&*$")%&6/;(*,32&),()$;-.*
("#$%&"'(")-.*(#(")1*)&*)(1)*:&%*/"1-:(*131)('*1)-)(17*
*
B(%:&%'-";(* !1)$'-)(1* * !-%.3* $"*),(* 6(1$0"* 2%&;(11C* "&"D:/";)$&"-.* %(4/$%('(")1*
"((6*)&* 5(*)(1)(6* $"* &%6(%*)&* 1((* ,&<*),(* $")(0%-)$&"* &:* -* 131)('* <$..* $'2-;)*),(*
&#(%-..* @31)('* &:* @31)('1* E@&@F7* * G%(-)$"0* -* 1$"0.(* @&@* HB* '&6(.* 2%$&%*)&*),(*
-;4/1)$&"* 2%&;(11* ("-5.(1*),(* -;4/1)$&"* ;&''/"$)3*)&* 1)-"6-%6$I(*),(* #("6&%*
%(12&"1(*4/(1)$&""-$%(C*),(%(53* %(1/.)$"0* $"*-* :&%'-.*'(),&6*&:*(#-./-)$"0*2&)(")$-.*
1&:)<-%(* 1&./)$&"17* *8/%),(%'&%(C* $";&%2&%-)$"0* -*)(;,"$;-.* 4/(1)$&""-$%(*),-)* (.$;$)1*
HB* '&6(.* $"2/)* %(12&"1(1* :%&'* 2&)(")$-.* #("6&%1* $1* (=2(;)(6*)&* 1)%(-'.$"(*),(*
#("6&%91*%(12&"1(*(::&%)1*-1*<(..*-1*),(*(#-./-)$&"*'(),&6&.&037***"
*
H&6(.*J$(<1* *?,(*@@@?AB*(#-./-)$&"*)(-'*;-"*(=)%-;)*%(2%(1(")-)$&"1*&:*),(*'&6(.*
$"*#$1/-.*-"6*)(=)/-.*#$(<1*$"*&%6(%*)&*;&''/"$;-)(*),(*%(1/.)1*)&*5&),*)(;,"$;-.*-"6*
"&"D)(;,"$;-.*@@@?AB*'('5(%17****

2"*0--&,("3(4(01"

?,(*$"$)$-.*HB*:%-'(<&%>*<-1*-22.$(6*)&*),(*K-#3*L/"1,$2*@&:)<-%(*@-:()3*6&'-$"*
-"6*)(1)(6*/1$"0*-"*HB*;&'2$.(%*6(#(.&2(6*53*),$1*%(1(-%;,*)(-'*E<<<7!-0.(M7;&'F7**
?,(*)&&.* ,-1* ;%(-)(6* -"* (=(;/)-5.(* ;&6(*),-)* 5%$60(6*),(* 0-2* 5()<(("* ;&";(2)* -"6*
6(1$0"* -"6* 2%&#(6*)&* 5(* ;%$)$;-.* 6/%$"0*),(*)(1)$"0* 2%&;(117* * ?,(*)&&.* $1* '-6(*
2/5.$;-..3* -#-$.-5.(*)&* -..* $")(%"()* /1(%1C* -"6* <(* -%(* %(;($#$"0* :((65-;>* &"* -* 6-$.3*
5-1$17*?,(*$"$)$-.*$'2.('(")-)$&"*&:*),(*:%-'(<&%>*1-)$1:$(6*&/%*&5N(;)$#(*&:*;%(-)$"0*
-* :%-'(<&%>*),-)*("-5.(1*-"* -5$.$)3*)&*(#-./-)(*),(* $")(0%-)$&"* %$1>1*-11&;$-)(6*<$),*
2&)(")$-.* 0/"1,$2* 1&:)<-%(* 1&./)$&"17* *O(*,-#(*'&6(.(6* -*0/"1,$2* 1&:)<-%(* 131)('*
/1$"0*!-0.(M*-"6*-%(*-5.(*)&*)(1)*:&%*/"1-:(*1)-)(1*/1$"0*),(*!-0.(M*1&:)<-%(7*

5"674,1"8+-"#94704(.+,"

!#-./-)$"0*),(* (::(;)$#("(11* &:*),(* !-0.(M* 1&:)<-%(* -1* -22.$(6*)&*),(* L/"1,$2*
@&:)<-%(*@-:()3*6&'-$"* %(1/.)(6* $"*),(* (#-./-)$&"*&:*),(* :&..&<$"0*6&'-$"D12(;$:$;*
1&./)$&"*2%&2(%)$(1P*
*
Q3"-'$;*A(/1(*-"6*!=)("1$5$.$)3*D*A(/1(*$1*1/22&%)(6*),%&/0,*),(*(#(")*0%-''-%*

;-2-5$.$)3*)&* -66R(6$)R6(.()(* HB* -51)%-;)* ;&'2&"(")1* E@;,('-1F7* * @$";(*),(*
$")(%-;)$&"*-'&"0*131)('1*-"6*(#(")1* $1*6(;&/2.(6*#$-*;&""(;)&%1C*-*,$0,*6(0%((*&:*
63"-'$1'*$1*2%&#$6(6*<$),*'$"$'-.*6$1)/%5-";(*)&*),(*%(1)*&:*),(*'&6(.7*?,(*!-0.(M*

47

!"#$%&'"() *+,,'"-*) #) *.$,/%0) !#.-1!+/) $#,,.23) 4%-&%%2) -1%) #"51.-%5-+"#/) %/%$%2-*)
#26)-1%.").$,/%$%2-#-.'27))8#3/%9)1#*)-1%)5#,#4./.-:)-')$#,);*%)<#*%*)-')!+25-.'2#/)
6%*.32)"%=+."%$%2-*7)>1.*)!.6%/.-:).*)2%5%**#":)-')%2*+"%)-1#-)-1%)5'25%,-+#/).2-%3".-:)

.$,/%$%2-#-.'27)
)
8!!.5.%25:)?)@%)+*%6)#)5+*-'$)%A%2-)-"#5%)3%2%"#-'")5"%#-%6)*,%5.!.5#//:)-')-%*-)BC)

$'6%/*7))>1%)8#3/%9)%A%2-)-"#5%)3%2%"#-'")%2#4/%6)+*)-')-%*-)BC)$'6%/*).2)"%/#-.A%/:)
1'"-)-%-)5:5/%*0)-1%"%4:)"%*+/-.23).2)!%&%")%""'"*).2)BC),"'3"#$$.230)*-#26#"6.D%6)
BC)$'6%/.23) $%-1'6'/'3:0) #26) /%**) -.$%) 2%%6%6) -') 51#23%) -1%)BC) -%*-) $'6%/) -')
4%--%")"%!/%5-)-1%)E+2)F:*-%$)#26).-*)%2A."'2$%2-7)
)
G**%"-.'2)<1%5(.23)?)BC)6'%*)#2)%H1#+*-.A%)*%#"51)-1"'+31)#//),'**.4/%)*5%2#".'*)

I+,) -') -1%) *5',%) /.$.-J7))BC),"'A.6%*)#)$%#2*) -')&".-%)#**%"-.'2*)#4'+-) -1%)
:-%$)4%1#A.'")#26)-''/*)-')A%".!:)-1'*%)#**%"-.'2*7))>1.*)!+25-.'2).*)2'2?-".A.#/)*.25%)
1#A.23) -1%) #4./.-:) -') &".-%) %A%2-) 3"#$$#") -1#-) *+,,'"-*) !'"$#/) #**%"-.'2) 51%5(.23)
#//'&*)-1%)#"51.-%5-)-')-%*-)!'")+2*#!%)*-#-%*)4:)%A#/+#-.23)*:*-%$)#--".4+-%*7))
)
!"#$%&'()*(+($,-.) >1%) A.%&*) #26) 5'25/+*.'2*) 5'2-#.2%6) 1%"%.2) #"%) -1'*%) '!) -1%)
#+-1'")#26)*1'+/6)2'-)4%).2-%","%-%6)#*)2%5%**#"./:)"%,"%*%2-.23)-1%)'!!.5.#/),'/.5.%*)'")
%26'"*%$%2-*0)%.-1%")%H,"%**%6)'").$,/.%60)'!)-1%);7F7)E'A%"2$%2-7)

/(0(1($"(-2

K7) G+3+*-'20) B7L0) F'!-&#"%) G"51.-%5-+"%) M+./-) !"'$) M%1#A.'") B'6%/*7) G<B) FNEFOP>)
F'!-&#"%)823.2%%".23)Q'-%*0)R'/+$%)ST)Q+$4%")U)IVWWXJ)

V7) Y#5(*'20)Z70)Z#$'20)<7G7L)8/%$%2-*)'!)*-:/%L)G2#/:D.23)#)*'!-&#"%)6%*.32) !%#-+"%)&.-1)#)
5'+2-%"%H#$,/%)6%-%5-'"7)N888)>"#2*#5-.'2*)'2)F'!-&#"%)823.2%%".230)VVI[J)IKXX9J)

S7) \"+51-%20)C7L)G"51.-%5-+"#/)M/+%,".2-*)?)-1%)T]K)R.%&)B'6%/)'!)F'!-&#"%)G"51.-%5-+"%7),,7)
TV?U)N888)F'!-&#"%)KV)I9J)IKXXUJ))

T7) C%"":0)Z7870)@'/!0)G7L)P'+26#-.'2*)!'")-1%)F-+6:)'!)F'!-&#"%)G"51.-%5-+"%7),,7)TW?UV7)G<B)
FNEFOP>)F'!-&#"%)823.2%%".23)Q'-%*0)K[LT)IKXXVJ)

U7) Y#5(*'20) Z7L) F'!-&#"%) G4*-"#5-.'2*L) ^'3.50) ^#23+#3%0) #26) G2#/:*.*7) <#$4".63%0)
B#**#51+*%--*7)>1%)BN>)C"%**)IVWW9J))

97) G+3+*-'20)B70)B.51#%/0)M70)F1.230)B7L)82A."'2$%2-)M%1#A.'")B'6%/*) !'")G+-'$#-.'2)'!)
>%*-.23)#26)G**%**$%2-)'!)F:*-%$)F#!%-:0)N2!'"$#-.'2)#26)F'!-&#"%)>%512'/'3:0),,7)X[K?
X_W7)R'/7)T_0)N**+%)KW)IVWW9J))

[7) `.A%"#0)Y70)^+=.0)M%"D.2*0R7L)8!!%5-.A%),"'3"#$$#-.5)*'!-&#"%)*#!%-:)*-"#-%3:)!'");F)Q#A:)
E+2)F:*-%$)#5=+.*.-.'2),"'3"#$*7)C"'5%%6.23*)'!)QCF)9-1)G22+#/)G5=+.*.-.'2)`%*%#"51)
F:$,'*.+$7)KUX?K9T0)1--,Laa%6'5*72,*7%6+a2,*,+4*a*51'/#"/:a>`aVWKWaQCF?EFMCC?KW?
WWS7,6!)IVWWXJ)

_7)) C%"":0) Z7870) @'/!0) G7^7L) P'+26#-.'2*) !'") -1%) F-+6:) '!) F'!-&#"%) G"51.-%5-+"%*7) G<B)
FNEFOP>)F'!-&#"%)823.2%%".23)Q'-%*0)A'/7)K[0)2'7)T0),,7)TW?UV)IKXXVJ)

X7) F1#&0) B70) E#"/#20) Z7L) F'!-&#"%) G"51.-%5-+"%L) C%"*,%5-.A%*) '2) #2) 8$%"3.23) Z.*5.,/.2%7)
C"%2-.5%?b#//)IKXX9J)

KW7)^%A%*'20)Q7L)F#!%&#"%L)F:*-%$)F#!%-:)#26)<'$,+-%"*7)G66.*'2?@%*/%:)IKXXUJ)

48

A Model-based Framework for
Software Performance Feedback

Catia Trubiani

Dipartimento di Informatica, University of L’Aquila
Via Vetoio n.1, 67010 Coppito, L’Aquila, Italy

catia.trubiani@univaq.it

Abstract. The problem of interpreting the results of performance anal-
ysis is quite critical in the software performance domain: mean values,
variances, and probability distributions are hard to interpret for pro-
viding feedback to software architects. Support to the interpretation of
such results that helps to fill the gap between numbers and architectural
alternatives is still lacking.
The goal of my PhD thesis is to develop a model-based framework ad-
dressing the results interpretation and the feedback generation problems
by means of performance antipatterns, that are recurring solutions to
common mistakes (i.e. bad practices) in the software development. Such
antipatterns can play a key role in the software performance domain,
since they can be used in the search of performance problems as well as
in the formulation of their solutions in terms of architectural alternatives.

Key words: Software Architecture, Performance Evaluation, Antipat-
terns, Feedback Generation, Architectural Alternatives.

1 Problem

The trend in modeling and analyzing the performance of software systems is to
build a cycle where models are derived form design artifacts, and results from
models are evaluated in terms of design artifacts, so that the performance issues
are brought to the forefront early in the design process [15].

Figure 1 schematically represents the typical steps that must be executed in
the software life-cycle to run a complete performance process. Rounded boxes
in the figure represent operational steps whereas square boxes represent in-
put/output data. Arrows numbered from 1 through 4 represent the typical for-
ward path from an (annotated) software architectural model all the way through
the production of performance indices of interest. While in this path quite well-
founded approaches have been introduced for inducing automation in all steps
(e.g. [14]), there is a clear lack of automation in the backward path that shall
bring the analysis results back to the software architecture.

The core step of the backward path (i.e. the shaded box of Figure 1) is the
results interpretation and feedback generation: the performance analysis results
have to be interpreted in order to detect, if any, performance problems, and once

49

2 Catia Trubiani

Fig. 1. Automated software performance process.

performance problems have been detected (with a certain accuracy) somewhere
in the model, solutions have to be applied to remove those problems1.

The search of performance problems in the architectural model may be quite
complex and needs to be smartly driven towards the problematic areas of the
model. The complexity of this step stems from several factors: (i) performance
indices are basically numbers and often they have to be jointly examined: a sin-
gle performance index (e.g. the utilization of a service center) is not enough to
localize the critical parts of a software architecture, since a performance problem
can be detected only if other indices (e.g. the throughput of a neighbor service
center) are analyzed; (ii) performance indices can be estimated at different lev-
els of granularity (e.g. the response time index can be evaluated at the level of
cpu device, or at the level of services that span on different devices) and it is
unrealistic to keep under control all indices at all levels of abstraction; (iii) archi-
tectural models can be quite complex, and the origin of performance problems
emerges only looking at the architectural elements described in different views
of a system (such as static structure, dynamic behaviour, etc.).

The research activity of my PhD thesis is focused on the core step, and
in Figure 1 the most promising elements that can drive this search have been
explicitly represented, i.e. performance antipatterns (i.e. input labeled 5.b to the
core step). The aim is to introduce automation in the backward path providing
a feedback to the architectural model (label 6) in the form of an architectural
alternative that removes the original performance problems. The benefit of using
antipatterns when closing the software performance cycle is that they base on
a comprehensive view of the system, thus to capture complex phenomena. An
antipatterns-based approach differs from (i) design space exploration techniques
that blindly examine all architectural alternatives, (ii) genetic algorithms that
search for local changes in the architectural model under analysis.

The main source of performance antipatterns is [13], where modeling notation-
independent antipatterns are defined. Some other works present instances of
antipatterns, but they are not as general as the ones in [13] (see Section 2).
1 Note that this task very closely corresponds to the work of a physician: observing a

sick patient (the model), studying the symptoms (some bad values of performance
indices), making a diagnosis (performance problem), prescribing a treatment (per-
formance solution).

50

A Model-based Framework for Software Performance Feedback 3

2 Related work

One of the first proposals of automated generation of feedback due to the software
performance analysis can be found in [9], where the detection of performance
flaws is demanded to the analysis of a specific notation, i.e. Layered Queued
Network (LQN) models, and uses informal interpretation matrices as support.

The issue of solving performance issues through antipatterns has been ad-
dressed in [12], where a Performance Antipattern Detection (PAD) tool is pre-
sented. However, PAD only deals with Component-Based Enterprise Systems
and targets Enterprise Java Bean (EJB) applications. It is based on monitoring
data from running systems from which it extracts the run-time system design and
detects only EJB antipatterns. Its scope is restricted to running EJB systems,
therefore it is not applicable in the early development stages.

Another interesting work on the software performance diagnosis and im-
provements has been proposed in [16]: performance flaws are identified before
the implementation, even if they are related only to bottlenecks and long paths.
Performance antipatterns, compared to simple bottleneck and long paths iden-
tification, help to find more complex situations that embed hardware and/or
software problems. Additionally in [16] performance issues are identified at the
level of the LQN performance model, and the translation of these model proper-
ties into design changes could hide some possible refactoring solutions, whereas
the performance antipatterns give a wider degree of freedom for architectural
alternatives, since they embed the solutions in their definition.

3 Proposed solution

In this Section a vision of the approach is discussed: the problem of interpreting
the performance results and generating architectural alternatives is addressed
with a model-based framework that supports the management of antipatterns.

The main activities performed within such framework are schematically shown
in Figure 2: specifying antipatterns, to define in a well-formed way the proper-
ties that lead the software system to reveal a bad practice as well as the changes
that provide a solution; detecting antipatterns, to locate antipatterns in software
models; solving antipatterns, to remove the detected performance problems with
a set of refactoring actions that can be applied on the system model.

The activity of specifying antipatterns is performed by introducing a meta-
model (i.e., a neutral and a coherent set of interrelated concepts) to collect the
system elements that occur in the definition of antipatterns (e.g. software re-
source, network resource utilization, etc.), which is meant to be the basis for
a machine-processable definition of antipatterns. An antipattern definition in-
cludes: (i) the specification of the problem, i.e. a set of rules that interrogate
the system elements to look for occurrences of the corresponding antipattern;
(ii) the specification of the solution, i.e. a set of actions that are applied on the
system elements to remove the original performance issues.

The activities of detecting and solving antipatterns are performed by re-
spectively translating the antipatterns rules and actions into concrete modeling
notations. In fact, the modeling language used for the target system, i.e. the

51

4 Catia Trubiani

Fig. 2. The main activities of the model-based framework.

box (annotated) software architectural model of Figure 1, is of crucial relevance,
since the antipatterns neutral concepts must be translated into the actual con-
crete modeling languages, if possible2. The framework is currently considering
three notations: a system modeling language such as UML [2] and Marte pro-
file [3]; a domain specific modeling language such as Palladio Component Model
(PCM) [4]; an architectural language such as Æmilia [5]. In general, the subset of
target modeling languages can be enlarged as far as the concepts for representing
antipatterns are available; for example, architectural description languages such
as AADL [1] can be also suited to validate the approach.

For example, the “Blob” antipattern [13] can be detected if a software re-
source requires a lot of information from the other ones, it generates excessive
message traffic that lead to over utilize the available network resources. Figure 3
shows an example of the UML and Marte architectural model where the shaded
boxes highlight the excerpts of the architecture evidencing the “Blob” (i.e. the li-
braryController UML component)3. Such antipattern can be solved by balancing
in a better way the business logic among the available software resources and/or
by re-deploy the blob software resource to avoid remote communications.

4 Expected contributions

The activity of specifying antipatterns provides several contributions: (i) the
identification of the system elements of the antipatterns specification (e.g. soft-
ware resource, network resource utilization, processing resource, etc.); (ii) the
formalization of the antipatterns specification as logical predicates by introduc-
ing functions and threshold values4; (iii) the definition of a metamodel able to
capture the antipatterns properties, i.e. the system model elements.

Performance antipatterns can be translated across the three different nota-
tions (i.e. UML and Marte, PCM, and Æmilia) that the framework considers.

2 It depends on the expressiveness of the target modeling language.
3 For example, a software resource can be represented as a UML component, the

network resource utilization can be represented as the tagged value utilization of the
MARTE stereotype GaCommHost applied to a UML node, etc.

4 Threshold numerical values can be assigned by software architects basing on heuristic
evaluations or they can be obtained by monitoring the system.

52

A Model-based Framework for Software Performance Feedback 5

Fig. 3. An example of the “Blob” antipattern [13] in the UML and Marte profile
modeling language.

More in general, in a concrete modeling language there are antipatterns that
can be automatically detected and/or automatically solved and some others
that are neither detectable and solvable. There is an intermediate level of an-
tipatterns that are semi-automatically detectable by relaxing some rules, and/or
semi-automatically solvable by devising some actions to be manually performed.

5 Current Status
The activity of specifying antipatterns is addressed in [8]: a structured description
of the system elements that occur in the definition of antipatterns is provided,
and performance antipatterns are modeled as logical predicates. Such predicates
could be further refined by looking at probabilistic model checking techniques,
as Grunske experimented in [11]. An AntiPattern Modeling Language, i.e. a
metamodel specifically tailored to describe antipatterns, is introduced in [6].

The activities of detecting and solving antipatterns are currently implemented
only for the UML and Marte profile notation in [7]: the antipattern rules and
actions are translated into that system modeling language.

Additionally, instead of blindly moving among the antipattern solutions with-
out eventually achieving the desired results, a technique to rank the antipatterns
on the basis of their guiltiness for violated requirements is defined in [10], thus
to decide how many antipatterns to solve, which ones and in what order.

The current work is on investigating the PCM modeling language and the
Æmilia architectural language by experimenting the antipatterns that can be
specified in these concrete notations.

6 Plan for evaluation
The aim of my PhD thesis is to provide automation in the backward path from
the performance analysis to software modeling by means of antipatterns. The
experimentation on the UML and Marte profile modeling language validates the
applicability of the whole approach, i.e. the support to results interpretation and
feedback generation by specifying, detecting, and solving antipatterns.

53

6 Catia Trubiani

As a short term future goal the approach has to be validated to complex case
studies, allowing to study its actual usability and scalability. Such experimenta-
tion is of worth interest because the final purpose is to integrate the framework
in the daily practices of software architects.

In a longer term, some critical pending issues have to be faced in order to au-
tomate the whole process. The solution of antipatterns generates three main cat-
egories of problems: (i) the convergence problem, i.e. the solution of one or more
antipatterns might introduce new antipatterns; (ii) the requirement problem, i.e.
when one or more antipatterns cannot be solved due to pre-existing (functional
or non-functional) requirements; (iii) the coherency problem, i.e. when the solu-
tion of a certain number of antipatterns cannot be unambiguously applied due
to incoherencies among their solutions.

References

1. SAE, Architecture Analysis and Design Language (AADL), June 2006, as5506/1,
http://www.sae.org.

2. UML 2.0 Superstructure Specification, Object Management Group, Inc. (2005),
http://www.omg.org/cgi-bin/doc?formal/05-07-04.

3. UML Profile for MARTE beta 2, Object Management Group, Inc. (2008),
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf.

4. S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model for
model-driven performance prediction. JUSS, 82:3–22, 2009.

5. M. Bernardo, L. Donatiello, and P. Ciancarini. Stochastic Process Algebra: From
an Algebraic Formalism to an Architectural Description Language. In Perfor-

mance, pages 236–260, 2002.
6. V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani. Approach-

ing the Model-Driven Generation of Feedback to Remove Software Performance
Flaws. In EUROMICRO-SEAA, pages 162–169, 2009.

7. V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani. Dig-
ging into UML models to remove performance antipatterns. In ICSE Workshop

Quovadis, pages 9–16, 2010.
8. V. Cortellessa, A. Di Marco, and C. Trubiani. Performance Antipatterns as Logical

Predicates. In IEEE ICECCS, pages 146–156, 2010.
9. V. Cortellessa and L. Frittella. A framework for automated generation of archi-

tectural feedback from software performance analysis. In Proc. of Formal Methods

and Stoc. Models for Perf. Eval., volume 4748 of LNCS, pages 171–185, 2007.
10. V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani. A Process to Effectively

Identify ”Guilty” Performance Antipatterns. In FASE, pages 368–382, 2010.
11. L. Grunske. Specification patterns for probabilistic quality properties. In ICSE,

pages 31–40, 2008.
12. T. Parsons and J. Murphy. Detecting Performance Antipatterns in Component

Based Enterprise Systems. Journal of Object Technology, 7(3):55–90, 2008.
13. C. U. Smith and L. G. Williams. More new software performance antipatterns:

Even more ways to shoot yourself in the foot. In Comp. Meas. Group Conf., 2003.
14. C. M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J. Merseguer.

Performance by Unified Model Analysis (PUMA). In WOSP, pages 1–12, 2005.
15. C. Murray Woodside, Greg Franks, and Dorina C. Petriu. The Future of Software

Performance Engineering. In FOSE, pages 171–187, 2007.
16. J. Xu. Rule-based Automatic Software Performance Diagnosis and Improvement.

In WOSP, pages 1–12. ACM, 2008.

54

Scenario-based Analysis of UML Design Class Models

Lijun Yu

Department of Computer Science, Colorado State University
Fort Collins, CO 80523, USA

lijun@cs.colostate.edu

Abstract. Identifying and resolving design problems in the early software
development phases can help ensure software quality and save costs. In this
research we will develop a lightweight approach to uncovering errors in UML
design models consisting of class diagrams with invariants and operation
specifications expressed in the OCL. In this analysis method a set of scenarios
created by a verifier is used to check the functionality specified by operations in
the design class diagrams. The scenario generation technique utilizes use cases,
misuse cases and activity diagrams describing allowed and disallowed
functionality. The method is lightweight in that it analyzes behavior of UML
design class model within the scope of a set of scenarios. It is static in that it
does not animate or execute the UML design. Empirical studies will be done to
evaluate the effectiveness of the method.

Keywords: Scenario, Snapshot, Static Analysis, Scenario Generation, Use Case,
Misuse Case, System Operation

1 Problem

Tool-supported rigorous analysis of design models can enhance the ability of
developers to identify potential design problems earlier. Detecting and resolving
design problems in the design phase prevents them from getting into later
development and production phases where they are more costly to fix.

In this doctoral research a scenario-based UML design analysis method will be
developed. UML has been accepted by the industry as a de facto standard for object-
oriented modeling. The research aims to answer the following questions:

 How can existing class diagram static analysis tools be used to support analysis
of functionality?

 What types of errors can be uncovered in scenario-based analysis of class
diagrams?

 How can scenarios be used to systematically analyze UML design class
diagrams?

In this work scenario is a sequence of system operation calls. System operation is
an operation that is directly called by external actors. Scenarios can be described
using UML sequence diagrams.

Existing UML and OCL analysis tools such as OCLE [OCLE] and USE [USE]
can be used to check whether snapshots describing system state satisfy the properties

55

expressed in class diagrams. OCLE tool does not analyze operation contracts. The
USE tool can be used to analyze operation constraints by simulating behavior of
operations in interactive command mode. The proposed research will investigate how
these tools can be used to support analysis of functionality against a set of scenarios
describing desirable and undesirable behavior.

2 Related work

2.1 UML design analysis and testing techniques

Formal analysis tools such as the Alloy Analyzer [Alloy] and model checking tools
[Clarke99] do exhaustive search in the modeled state space to find solutions that
satisfy constraints or verify given properties. Formal theorem proving tool such as
Isabelle can be used to reasons about properties in the model in interactive mode
[Brucker08]. All these techniques need to transform UML designs to their own
languages to analyze the UML designs. However, it is a challenging problem to prove
the correctness of transformation. For example, [UML2Alloy] has not proved that the
transformed Alloy model is syntactically correct.

There is related work that dynamically analyzes executes UML models. In UML
Animation and Testing approach (UMLAnT) [Trung05], the UML design under test
(DUT) contains UML design class diagrams and UML sequence diagrams.
Operations in the class diagrams are specified with OCL pre and post conditions and
actions using a Java-like Action Language (JAL). The sequence diagram describes
realization of one system operation and test inputs are derived from the sequence
diagram using a constraint solver. The UML design is executed to find the
inconsistencies between the operation actions and OCL operation contracts.
Compared with UMLAnT, the scenario-based UML design analysis method described
in this work does not execute the UML design. It is a static technique in which the
UML design class diagram is checked with the behavior of scenarios to find design
errors. Also the method proposed in this work analyzes sequence of system operations
instead of realization of one system operation.

Similar to UML testing technique, UML animation techniques try to execute UML
designs. Oliver and Kent propose a UML animation technique to validate a UML
design [Oliver99]. In their work UML design class diagrams are animated by
mapping OCL constraints to operations on snapshots. In another piece of work
Krieger and Knapp use a SAT solver to find new system state that satisfies operation
post-conditions [Krieger08]. Compared with UML animation techniques, scenario
generation in this work does not depend on operation contracts.

2.2 Test scenario generation from UML requirements model

There are a few approaches that generate test scenarios from use cases in the UML
model. All of them generate test cases for testing the code that implements the UML
model. Briand and Labiche proposed an approach to generate test data and test oracles
from UML analysis model for system testing [Briand02]. In their work system test

56

requirements are automatically derived from UML analysis artifacts. Valid use case
sequences are generated based on use case sequential constraints described using
activity diagrams. Use case sequences can be interleaved and each use case may have
use case variances which are described using a decision table. The method depends on
the verifier’s knowledge to select test cases from a large number of interleaved use
case sequences and use case variances, also not all the use case and use case variance
sequences are feasible. In this work constraint solving technique is used to find initial
system state and system operation parameters for all feasible paths in the activity
model. Nebut et. al. proposed a use-case driven approach to generate system test
inputs [Nebut06]. In their work use cases are fully specified with pre and post
conditions. Use cases are built into a Use Case simulation and Transition System
(UCTS). Valid instantiated use case sequences are generated by exhaustively
simulating the system. The limitation of the approach is that the space of UCTS may
be huge when many use cases can be applied at each step of simulation. Kundu and
Samanta use UML activity diagram that describes activity sequences inside one use
case to generate system test cases [Kundu09]. In their work the activity diagram is
converted to an activity graph and test sequences are generated from the graph based
on different coverage criteria. Compared with the scenario generation approach in this
work, their work focuses on generating action sequences from the UML activity
diagram and the effects of actions are not formal specified and taken into
consideration in test input generation.

3 Proposed solution

The goal of this work is to develop a tool-supported lightweight static method to
analyze functionality specified in UML design class models. The method consists of
two independent techniques: a scenario-based UML design analysis technique (Fig.1)
and a scenario generation technique.

The scenario-based UML design analysis technique checks a UML design class
model against a set of scenarios created by the verifier [Yu08] [Yu07]. The scenario-
based analysis method extends the applicability of static analysis tools such as USE
and OCLE to behavior analysis. The UML design class model is transformed to a
snapshot model which captures valid snapshot transitions as determined by the
operation specifications defined in the class model. A scenario captures a sequence of
system operation calls and parameters of all the operations are instantiated. The
behavior of a scenario is defined as a sequence of snapshot transitions. Snapshot
transition describes the behavior of an operation in terms of how system state changes
after the operation is invoked. A snapshot transition consists of (1) the name and
parameter values of the operation that triggers the transition, (2) a before-snapshot
describing the state of the system before the operation is executed, and (3) an after-
snapshot describing the state of the system state after the operation has executed. The
snapshot transitions which capture the behavior of scenarios are checked against the
snapshot model to find inconsistencies between them. This can be done by leveraging
existing UML design tool such as USE [USE] and OCLE [OCLE] which checks the
consistency between a UML class model and a snapshot. The output of the scenario-

57

based UML design analysis technique is a set of inconsistencies between the
functionality specified in the design class model and the behavior described by a
scenario.

Fig. 1. Scenario-based UML design analysis technique

The scenario generation technique generates scenarios from the requirements or the
verifier’s domain knowledge. A basic scenario generation technique that generates
scenarios from the verifier’s domain knowledge was proposed in [Yu09]. A
systematic scenario generation technique will be developed to generate a set of
scenarios from the requirements model for verification of functionality at the system
level. We prefer to generate scenarios from the requirements, because the essence of
the scenario-based design analysis technique is to check the consistency between
structural UML design and the behavior of scenarios: scenarios generated from the
requirements better reflect the verifier’s view of system functionality than scenarios
generated from the design which capture the designer’s view.

The requirements model contains UML use case diagram, requirement class
diagram and activity diagram. The use case diagram specifies use cases which
describe expected behavior and misuse cases which describe unexpected behavior.
Each use case and misuse case is formally described as a system operation with OCL
pre and post conditions. The requirement class diagram describes entities and their
relationships in the requirements model. It differs from the design class diagram in
that the design class diagram refines the requirement class diagram with detailed
operation specifications. The activity diagram describes flow of control among use
cases and misuse cases. In the Fusion method valid system operation sequences are
described in a life-cycle model using life-cycle expressions [Fusion93]. UML activity
diagram gives a graphical description of the use case sequences, it also describe
parameters and parameter dependencies of system operations by modeling parameters
as object nodes.

To generate scenarios from the requirements model, a set of coverage criteria will
be defined. For example, action coverage criteria requires that each action (system
operation) in the activity diagram must be covered at least once, and activity edge
coverage criteria requires that the each edge in the activity diagram be covered at least
once. Based on certain coverage criteria, a set of system operation paths are selected
from the activity diagram. For each system operation path in the activity diagram, the
pre and post conditions of the operations in the path and all branch and guard

58

conditions are automatically generated and fed to a constraint solver such as Alloy,
the constraint solver finds an initial system state and system operation parameters in
the system operation path. This will generate a set of requirement-level scenarios and
these scenarios are mapped to the design-level system operation sequences for design
analysis purpose.

4 Expected contributions

The major contribution of this dissertation is a tool-supported scenario-based UML
design analysis technique. In the technique a verifier creates a set of scenarios to
analyze a UML design class model. The technique transforms the UML design model
to a snapshot model and checks consistencies between the snapshot model and
snapshot transitions which capture the behavior of scenarios. Another contribution is
a scenario generation technique. The technique generates a set of scenarios from the
allowed system operation sequences in the requirements model. The generated system
operation sequences can be used as a subset of system test cases for system testing.

5 Current status

The scenario-based UML design analysis technique has been proposed and published
in [Yu07] and [Yu08]. A basic scenario generation technique that generates scenarios
from the verifier’s domain knowledge was proposed in [Yu09]. This technique
depends on the verifier’s domain knowledge. A tool that supports the model
transformation and scenario generation is being implemented in Eclipse EMF and the
Kermeta meta-programming environment. After the tool is implemented, empirical
studies will be done to evaluate the design analysis technique. The scenario
generation technique proposed in this work will be further studied and evaluated.

6 Plan for evaluation

The scenario-based UML design analysis technique will be evaluated by an empirical
study. The goal of this study is to investigate: 1) can the technique effectively find
inconsistencies between UML class model and scenarios? 2) what types of
inconsistencies can the technique uncover? In the study, students with background in
object-oriented design, UML and OCL will be assigned to two groups. A UML design
model including UML design class diagram and OCL constraints, scenarios described
by UML sequence model will be prepared. A number of inconsistencies will be
seeded in the design class model and scenarios. The first group of students manually
inspects the design model to find inconsistencies. The second group of students uses
the scenario-based analysis tool to check the consistencies between the scenarios and
the UML design. Number and type of inconsistencies found by each student will be
recorded and results from the two groups will be compared.

59

Another study will be conducted to evaluate the scenario generation technique. The
goal of this case study is to investigate whether the scenario generation tool generates
scenarios that effectively uncover design errors. The scenario generation technique
will be used to generate scenarios. At the same time a random scenario generator is
used to generate scenarios as comparison. Design errors uncovered by the scenario
generation technique and the random scenario generator will be compared.

References

1. [Alloy] D. Jackson, "Alloy: a lightweight object modeling notation", ACM Transactions
on Software Engineering and Methodology, Volume 11, Issue 2, April 2002, pp 256-290.

2. [Briand02] Lionel Briand, Yvan Labiche, “A UML-Based Approach to System Testing”,
Software and Systems Modeling, vol. 1 (1), pp. 10-42, 2002.

3. [Brucker08] Achim D. Brucker and Burkhart Wolff. HOL-OCL - A Formal Proof
Environment for UML/OCL. In Fundamental Approaches to Software Engineering.
Lecture Notes in Computer Science (4961), pages 97-100.

4. [Clark99] E. Clark, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
5. [Fusion93] Derek Coleman, Object-Oriented Development: The Fusion Method, 1993.
6. [Krieger08] Krieger, M. P. & Knapp, A. Executing Underspecified OCL Operation

Contracts with a SAT Solver. ECEASST, 2008, 15
7. [Kundu09] Debasish Kundu and Debasis Samanta, “A Novel Approach to Generate Test

Cases from UML Activity Diagrams”, Journal of Object Technology, Volume 8, no. 3
(May 2009), pp. 65-83.

8. [Nebut06] Cle'mentine Nebut, Franck Fleurey, Yves Le Traon, Jean-Marc Je'ze' quel,
"Automatic Test Generation: A Use Case Driven Approach," IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 140-155, Mar. 2006, doi:10.1109/TSE.2006.22

9. [OCLE] D. Chiorean, M. Pasca, A. Carcu, C. Botiza, S. Moldovan, "Ensuring UML
Models Consistency Using the OCL Environment", Electronic Notes in Theoretical
Computer Science, Volume 102, Nov. 2004, pages 99-110.

10. [Oliver99] Iam Oliver, Stuart Kent, "Validation of Object Oriented Models using
Animation," euromicro, vol. 2, pp.2237, 25th Euromicro Conference (EUROMICRO '99)-
Volume 2, 1999

11. [Trung05] T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and A. A. Andrews. "A
Tool-Supported Approach to Testing UML Design Models", ICECCS '05, IEEE Computer
Society Press, pp.519-528, Shanghai, China, June 16-20, 2005.

12. [UML2Alloy] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, Indrakshi Ray: On
challenges of model transformation from UML to Alloy. Software and System Modeling
9(1): 69-86 (2010).

13. [USE] Gogolla, M., Büttner, F., and Richters, M. 2007. USE: A UML-based specification
environment for validating UML and OCL. Sci. Comput. Program. 69, 1-3 (Dec. 2007)

14. [Yu07] Lijun Yu, Robert B. France, Indrakshi Ray, and Kevin Lano, "A Light-Weight
Static Approach to Analyzing UML Behavioral Properties", Proceedings of the 12th IEEE
International Conference on Engineering of Complex Computer Systems, Auckland, New
Zealand, July 2007.

15. [Yu08] Lijun Yu, Robert France, Indrakshi Ray, "Scenario-based Static Analysis of UML
Class Models", Proceedings of ACM/IEEE 11th International Conference on Model
Driven Engineering Languages and Systems, Toulouse, France, Sep. 28-Oct.3, 2008.

16. [Yu09] Lijun Yu, Robert France, Indrakshi Ray, Sudipto Ghosh, "A Rigorous Approach to
Uncovering Security Policy Violations in UML Designs", Proceedings of the International
Conference on Engineering Complex Computer Systems, Potsdam, Germany, June 2009.

60

Table of Contents

Towards the Verication of State Machine-to-Java Code Generators for
Semantic Conformance . 1

Lukman Ab Rahim

Reuse in Modelling Method Development based on Meta-modelling 7
Alexander Bergmayr

Rearrange: Rational Model Transformations for Performance Adaptation . 13
Mauro Luigi Drago, Carlo Ghezzi, Raffaela Mirandola

A Model Driven Approach to Test Evolving Business Process based
Systems . 19

Qurat-ul-ann Farooq

A Transformational Approach for Component-Based Distributed
Architectures . 25

Fabian Gilson

Modeling Complex Situations in Enterprise Architecture 31
Hyeonsook Kim

Reference Modeling for Inter-organizational Systems 37
Dieter Mayrhofer

Applying Architecture Modeling Methodology to the Naval Gunship
Software Safety Domain . 43

Joey Rivera

A Model-based Framework for Software Performance Feedback 49
Catia Trubiani

Scenario-based Analysis of UML Design Class Models 55
Lijun Yu

61

