
A

A
A

A

A

A
A

A A

A A

A

Pamela Zave

AT&T Laboratories—Research

Florham Park, New Jersey, USA

MODELING THE INTERNET

A

A
A

A

A

A
A

A A

A A

A

MODELING THE INTERNET: OUTLINE

WHY SHOULD IT BE MODELED?

WHAT SHOULD BE MODELED?

HOW SHOULD IT BE MODELED?

A

A
A

A

A

A
A

A A

A A

A

STATE OF THE "CLASSIC" INTERNET ARCHITECTURE

THE "CLASSIC" INTERNET
ARCHITECTURE

defined in terms of layers with
different functions

THE REAL INTERNET

designed to empower users and
encourage innovation

has succeeded beyond anyone's
wildest dreams

it does not meet current or future
needs for . . .

 . . . security and reliability,

 . . . quality of service,

 . . . resource management,

 . . . balancing the interests of diverse
 stakeholders such as multiple
 service providers and their
 customers

the good properties of the classic
architecture are eroded badly by
workarounds

the classic architecture has been
made obsolete by explosive growth in
users, traffic, applications, and
security threats

[Clark et al. 05]

applications

middleware

transport (TCP,UDP)

network (IP)

link

physical

Internet
core

A

A
A

A

A

A
A

A A

A A

A

MANY APPLICATION NEEDS ARE
NOT SUPPORTED

THE COSTS AND BENEFITS OF NETWORK
SECURITY

NAT and firewalls are so tightly inter-
twined with TCP and UDP that unless they
know about an application, it is unlikely to
work

even applications that work are difficult
to build, deploy, and maintain because
there is no separation of concerns

THE STATE OF INTERNET APPLICATIONS

e.g., Web proxies can be invoked
on behalf of users, authorities,

Internet service providers,
content providers

Network-level security is provided by Network
Address Translation (NAT) and firewalls.

private subnetpublic Internet

machines here have
no persistent public
addresses

no initiation of
communication,
even if wanted

applications are not secure!

yet this form of security makes it very
difficult to build peer-to-peer applications

i.e., HTTP

machine mobility

process and virtual-machine
migration

session-level anycast

new name spaces

scaling up

application-level security
and privacy

balancing stakeholder
interests

A

A
A

A

A

A
A

A A

A A

A

THE STATE OF INTERNET EVOLUTION [Handley 06]

INTERNET "OSSIFICATION"

there has been no important
change in the transport layer (TCP/
UDP) since 1988

" . . . technologies get deployed in the core of the Internet

when they solve an immediate problem

or when money can be made"

there has been no important
change in the network layer (IP)
since 1993

it is very difficult for an Internet
service provider to make money
with improvements, because most
have no effect until everyone else
adopts them

a crisis is the only way to get the
global consensus required for
real change

A

A
A

A

A

A
A

A A

A A

A

THE STATE OF THE IETF

"A Hitchhiker's Guide to SIP" is a
snapshot of SIP RFCs and drafts . . .

 . . . which lists 142 documents,
 totaling many thousands of
 pages

THE MEDIUM

the base document (IETF RFC 3261)
is 268 pages

specifications are written in
English, augmented only by
message sequence charts that look
like this (IETF macros):

process1 process2

IETF philosopy is to standardize
based on "rough consensus and
working code"

finite-state machines are rarely
used

note how this forces you
to forget race conditions!

THE MESSAGE

it is continually being extended,
bottom-up, in response to an
endless series of new use cases

opinions are based on two false
assumptions:

more generality can only be obtained
with more complexity

a bad scenario can be ignored if
you claim it is rare (a "corner case")

. . . AS CAPTURED BY THE SPECIFICATION OF
SIP

this situation makes it very difficult to build SIP applications

A

A
A

A

A

A
A

A A

A A

A

THE STATE OF NETWORKING RESEARCH [Rexford 10]

"In my college networking class I fell
asleep at the start of the semester when
the IP header was on the screen, and
woke up at the end of the semester with
the TCP header on the screen."

A

A
A

A

A

A
A

A A

A A

A

THE STATE OF NETWORKING RESEARCH [Rexford 10]

"In my college networking class I fell
asleep at the start of the semester when
the IP header was on the screen, and
woke up at the end of the semester with
the TCP header on the screen."

"Networking is all details
and no principles."

A

A
A

A

A

A
A

A A

A A

A

THE STATE OF NETWORKING RESEARCH [Rexford 10]

"In my college networking class I fell
asleep at the start of the semester when
the IP header was on the screen, and
woke up at the end of the semester with
the TCP header on the screen."

"Networking is all details
and no principles."

"There is a tendency in our field to believe
that everything we currently use is a
paragon of engineering, rather than a
snapshot of our understanding at the time.
We build great myths of spin about how
what we have done is the only way to do
it . . . to the point that our universities now
teach the flaws to students . . . who don't
know better." —John Day

A

A
A

A

A

A
A

A A

A A

A

THE STATE OF NETWORKING RESEARCH [Rexford 10]

"In my college networking class I fell
asleep at the start of the semester when
the IP header was on the screen, and
woke up at the end of the semester with
the TCP header on the screen."

"Networking is all details
and no principles."

"There is a tendency in our field to believe
that everything we currently use is a
paragon of engineering, rather than a
snapshot of our understanding at the time.
We build great myths of spin about how
what we have done is the only way to do
it . . . to the point that our universities now
teach the flaws to students . . . who don't
know better." —John Day

"So, these network
research people today
aren't doing theory, and
yet they aren't the people
who brought us the Internet.
What exactly are they doing?"

A

A
A

A

A

A
A

A A

A A

A

MODELING THE INTERNET: OUTLINE

WHY SHOULD IT BE MODELED?

WHAT SHOULD BE MODELED?

HOW SHOULD IT BE MODELED?

Because businesses, networking
researchers, and the IETF are not making
progress toward an application-friendly
Internet . . .

. . . so software researchers have to do it.

A

A
A

A

A

A
A

A A

A A

A

THE IMPORTANCE OF OVERLAYS

Common definition: An overlay is a custom-built
network layer deployed over existing layers.

OVERLAYS ARE THE MODULES OF
NETWORK ARCHITECTURE

AN OVERLAY IS A "CLEAN SLATE"
FOR DESIGN

FOR TODAY: FOR THE FUTURE:

network resources
(physical, link layers)

Internet core
(network, transport

layers)

applications and
shared functions

(middleware)

OVERLAYS

frequently used
to support
applications
better than the
unvarnished
Internet does

virtual network
(slice of

resources)

applications

OVERLAYS

virtual network
(slice of

resources)

applications

OVERLAYS

network resources

virtualization

can experiment with new
architectural ideas

in the end, there may be no
universal Internet layer [Roscoe 06]

A

A
A

A

A

A
A

A A

A A

A

A BETTER DEFINITION OF OVERLAYS

A
B

C
D

E

An overlay contains
(potentially) all
network functions.

Overlays are arranged
in a "uses" hierarchy.

There are many instances of the
overlay type, varying in their rank
(level) and scope (membership).

Membership:
the members are
processes; each has a
unique and persistent
name from the name
space; enrollment
protocol accepts and
names new members

Routing:
any member can reach any
other through a path in the
overlay; routing protocol
spreads knowledge of links
and paths; forwarding protocol
uses path knowledge

SECURITY
AND

RESOURCE
MANAGEMENT
THROUGHOUT

Links:
there is a link between
two member processes
if both are registered
in the same lower
overlay

Registration:
user processes in a higher
overlay can register their
locations at member
processes; there is a
directory of registrations

Communication Service:
the overlay provides a
specified service for its users,
point-to-point sessions plus
any set of extra conveniences

B E

session(B,E)

[Day 08]

A

A
A

A

A

A
A

A A

A A

A

QUESTIONS WE CAN NOW ASK

application

overlays
covering the
functional
range from
middleware
to universal
connectivity

What communication services
can be implemented in
composable overlays?

How can these services
be specified and verified?

Is there a uniform
approach to scaling,
by splitting and
bridging domains,
without the bad
side-effects of
NAT?

Is there a uniform
approach to network
and application security
that allows policies
appropriate to each
application,
unlike firewalls?

Are there principles
for organizing uses
hierarchies?

When and how are
overlays bound
together?

1 2

3 4 5

A

A
A

A

A

A
A

A A

A A

A

MODELING THE INTERNET: OUTLINE

WHY SHOULD IT BE MODELED?

WHAT SHOULD BE MODELED?

HOW SHOULD IT BE MODELED?

Because businesses, networking
researchers, and the IETF are not making
progress toward an application-friendly
Internet . . .

. . . so software researchers have to do it.

aspects of overlays, to gain insight

A

A
A

A

A

A
A

A A

A A

A

LIGHTWEIGHT MODELING

DEFINITION

constructing a very abstract model
of the core concepts of a system

using an analysis tool based on
exhaustive enumeration to explore
its properties

WHY IS IT "LIGHTWEIGHT"?

because the model is very abstract
in comparison to a real
implementation, and focuses only
on core concepts, it is small and
can be constructed quickly

because the analysis tool is "push-
button", it yields results with little
effort

in contrast,
theorem proving is not "push-button"

WHAT IS ITS VALUE?

it is a design tool that reveals
conceptual errors early

it is a documentation tool that
provides complete, consistent, and
unambiguous information to
implementors and users

decades of research on
software engineering proves
that the cost of fixing a bug
rises exponentially with the

delay in its discovery

it is easy (at least to get started)
and surprising (you get the result
of scenarios you would never
expect)

"If you like surprises, you will
love lightweight modeling."

—Pamela Zave

EASY + SURPRISING = FUN

A

A
A

A

A

A
A

A A

A A

A

WHAT IS THE HIDDEN CHALLENGE?

It is so easy to write a model, ask the
analyzer a question, get an answer . . .

. . . but not so easy to know what any
of these means in the real world.

STATEMENTS IN MODEL

domain knowledge: description
of the environment in which the
system will operate (fact or
assumption)

specification: an implementable
description of how the
hardware/software system
should behave

requirement: a description of
how the environment should
behave when the system is
implemented and deployed

sanity check: intended to be
redundant

NONDETERMINISM IN MODEL

environment choice
implementation freedom
system failure
concurrency

ANALYSIS QUESTIONS

Is the model consistent (can be
realized) ?
Are the knowledge and requirements
correct ("validation") ?

Is the specification correct
 ("verification") ?

sanity checks help

environment systeminter-
face

knowledge,
requirements specification

knowledge & specification => requirements

[Jackson & Zave 95]

A

A
A

A

A

A
A

A A

A A

A

No clear distinction between endpoints
and servers—any server can act as an
endpoint—so protocols should be
piecewise.

SIP is defined end-to-end, so servers
create unanticipated states.

SIP is an asymmetric client-server
protocol.

SIP can run over TCP (reliable, FIFO,
duplicate-free transport) or over UDP
(none of the above), so the protocol
must handle message loss and
re-ordering.

IP-BASED VOICE AND MULTIMEDIA APPLICATIONS

including computer-supported cooperative work, distance learning, emergency
services, multiplayer games, and collaborative television

INHERENT PROTOCOL PROBLEMS

Endpoints are peers—a state-changing
event can come from any endpoint, at
any time.

There is a high degree of concurrency.

PROBLEMS OF SIP (THE SESSION
INITIATION PROTOCOL), WHICH IS THE
DOMINANT PROTOCOL FOR THESE
APPLICATIONS

A

A
A

A

A

A
A

A A

A A

A

proctype caller (chan in, out) {
 out!invite;
inviting: do
 :: in?accept; goto confirmed
 :: in?reject; goto end
 od;
confirmed: do
 :: in?invite; out!accept
 :: out!invite; in?accept
 od;
end: skip }

read executable iff. channel
in is not empty and its first
message is of type reject

write executable iff. channel out is not full
and accepts messages of type invite

caller callee

left

right

MODELING IN PROMELA: THE MODELING LANGUAGE OF THE SPIN
MODEL CHECKER

unlike most mature model checkers,
Spin is intended for software, not
hardware

Promela represents processes with
variables and arrays, guarded
commands, program-like control
structures

inter-process communication uses
bounded channels (FIFO, rendezvous,
etc. are options)

finite-state-
machine style

in

in

out

out

easy to model protocols,
networking, distributed applications

can place assertions, e.g.,
"assert(count >= 1)",
in-line

can specify global
properties in linear-time
temporal logic, including
both safety and progress

A

A
A

A

A

A
A

A A

A A

A

mathematically, a progress
property can only be falsified

by an infinite trace . . .
. . . so how does Spin do it?

success
loop in
reachability
graph means
there is an infinite trace that does not
reach success, therefore . . .

 ! (success)

invalid end states

THE SPIN MODEL CHECKER

WHAT SPIN CHECKS, FOR ALL
POSSIBLE TRACES:

deadlocks
freely available and actively maintained

well-engineered and mature, with many
analysis options

large user base, in academia, industry,
and government (U.S. space program)

[Holzmann 2004]

in-line assertions
temporal-logic assertions

caller callee

in?accept
out!accept

out!invite

out!invite
out!bye

in?invite

in?invite
in?bye

WHEN SPIN DETECTS AN ERROR, THE
TRACE (COUNTEREXAMPLE) IS RECORDED,
AND SPIN DRAWS A (REALISTIC) MESSAGE-
SEQUENCE CHART OF IT

AN EXCELLENT TOOL

A

A
A

A

A

A
A

A A

A A

A

models show what an endpoint
must do to use and interpret the
protocol correctly—this is far more
complicated than previously
understood

on TCP vs. UDP: with non-FIFO
communication, the reachability
graph is 100 times the size of the
FIFO reachability graph

an RFC documents 7 race
conditions—our model reveals
those and 42 others of the same
type

MODELING SERVERS

we annotate our models with
pointers to the relevant sections of
RFCs

as documentation, our models are
guaranteed to be complete,
consistent, and unambiguous

also, you know where to find the
answer to your question!

the final frontier—influencing the
IETF

DOCUMENTING SIP

STUDYING SIP WITH SPIN

MODELING ENDPOINTS [Zave 2008]
[Bond et al.

2010]

provides the first rigorous
definition of "transparent" behavior,
which is the foundation of all other
behaviors

we modified Spin to generate test
cases automatically, yielding
comprehensive test sets

ABSTRACTIONS

our "StratoSIP" language provides
generality while using only an
efficient subset of SIP

compilation of StratoSIP into SIP
signaling verified correct with Spin

[Zave et al. 2009]

A

A
A

A

A

A
A

A A

A A

A
1

8

14

21

32
38

42

48

51

identifier of a node (assumed
unique) is an m-bit hash of its IP
address

members are arranged in a ring,
with each member node having a
successor pointer to the next
member node

m = 6

keys 43 - 48 are
stored here

DISTRIBUTED HASH TABLES (DHTs)

ROLE AND POPULARITY

perform storage and lookup of
(key,value) pairs

data is distributed across
thousands or millions of
participating nodes

widely used in peer-to-peer
applications, for data structures
such as directories

TYPICAL STRUCTURE

CHORD IS THE BEST-KNOWN, MOST
STUDIED DHT

"Three features that distinguish Chord
from many peer-to-peer lookup
protocols are its simplicity,
provable correctness,
and provable performance."

A

A
A

A

A

A
A

A A

A A

A

When nodes join, they
first become appendages.

When nodes fail (or leave),
they make gaps in the ring.

THE RING-MAINTENANCE PROTOCOL

protocol has redundant
pointers and operations
that run regularly at
each node

its purpose is to
maintain all the
pointers and repair
disruptions of
the ring

Understanding this protocol means
understanding what properties are
preserved by joins and failures.

These invariants are the basis for
making repairs.

Finding the invariants is very difficult,
especially after-the-fact.

It requires a lot of trial and error.

as you will see, the designers of
Chord did not understand them

A

A
A

A

A

A
A

A A

A A

A
Node is a
basic type

succ and prdc are relations
from Node to Node, with
uniqueness constraints

MODELING IN ALLOY

individuals of type Time
(totally ordered)

individuals of
type Event

pre post cause

The language is a streamlined
blend of predicate logic and
relational algebra.

Although Alloy is first-order,
second-order quantification can
be simulated.

STATE OF A CHORD NETWORK

total ordering on
nodes represents
identifier order

STATE INVARIANTS

REPRESENTING TIME

[Jackson 06]

pred OneOrderedCycle[t: Time] {
 let cycleMembers =
 { n: Node | n in n.(^(succ.t)) } |

 some cycleMembers

&& (all disj n1, n2: cycleMembers |
 n1 in n2.(^(succ.t)))

&& (all disj n1, n2, n3: cycleMembers |
 n2 = n1.succ.t => ! Between[n1,n3,n2]) }

All state information is time-stamped.

at least one
cycle at most

one

a cycle node can reach
itself by following succ

pointers

cycle is globally
ordered

A

A
A

A

A

A
A

A A

A A

A

THE ALLOY ANALYZER

finite scope: there is a
limit on the members of

each basic type

Node Event
location

individual relation

PROOF OF A PROGRESS PROPERTY

Use Analyzer to establish an invariant—a
property preserved by all events; this
characterizes the reachable states.

Use Analyzer to show that any time the
state is not ideal, some improving event
is enabled.

Show that a finite number of improve-
ments will make a finite network ideal.

Use Analyzer to show that any time the
state is ideal, no "improving" event is
enabled.

Theorem: In any reachable state, if there
are no subsequent disruptions, then
eventually the network will become ideal
and remain ideal.

analyze traces of one or two events to
show that property is true after if true before

this non-Alloy step guarantees progress

analyzable scope far exceeds the largest
scope where any new phenomena appears

1

2
3

4

The Alloy Analyzer uses "model
enumeration" to check all
instances of a model within a
finite scope.

As with model checking, when
a check fails, there is a
counterexample to examine.

An instance might encode a
trace, but time and events
are not treated differently from
individuals of any other types.

A

A
A

A

A

A
A

A A

A A

A

CHORD PROPERTIES CLAIMED INVARIANT

61

9

15

21

3035

39

48

46

7

2

OrderedCycle

ConnectedAppendages

OrderedAppendages

OrderedMerges

ValidSuccessorList

NOT ONE of these properties
is actually an invariant!AtMostOneCycle

AtLeastOneCycle

(too complex to explain)

3

6

two studies of Chord
have been made using
model checking, and
they did not find any

of these problems

[Zave 10a]

and the protocol
is NOT correct!

A

A
A

A

A

A
A

A A

A A

A

USE THE RIGHT LANGUAGE FOR YOUR PURPOSE

PROMELA/SPIN ALLOY

reachable
state space

model state small and bounded small and bounded

automatically generated,
exact, not readable

invariant is a user-constructed
superset; readable

temporal
logic

Spin automatically
checks any formula in
temporal logic

Alloy Analyzer can only check
safety properties on short traces

temporal
sequencing

built into Promela;
displayed well by Spin

not built into Alloy language

state
structure

primitive in Promela;
displayed poorly by Spin

Alloy language is rich and
expressive; many display options

state
assertions

all but the most basic
ones must be written as
C programs, which is
awkward and difficult

Alloy language is rich,
expressive, and concise

the price of
push-button
analysis

A

A
A

A

A

A
A

A A

A A

A

MODELING THE INTERNET: SUMMARY

WHY SHOULD IT BE MODELED?

WHAT SHOULD BE MODELED?

HOW SHOULD IT BE MODELED?

Because businesses, networking
researchers, and the IETF are not making
progress toward an application-friendly
Internet . . .

. . . so software researchers have to do it.

aspects of overlays, to gain insight

using lightweight modeling tools

with attention to the real-world significance
of properties, not just their formal
semantics

using the right language for each purpose

NO SOFTWARE SYSTEM IS MORE IMPORTANT THAN THE INTERNET

THIS IS A TIME OF GREAT RESEARCH OPPORTUNITY

A

A
A

A

A

A
A

A A

A A

A

FURTHER READING

[Day 08] John Day, Patterns in Network Architecture, Prentice Hall, 2008.

[Jackson 06] Daniel Jackson, Software Abstractions: Logic, Language, and
Analysis, MIT Press, 2006.

[Roscoe 06] Timothy Roscoe, The end of Internet architecture, Proc. 5th
Workshop on Hot Topics in Networks, 2006.

[Holzmann 04] Gerard J. Holzmann, The Spin Model Checker: Primer and
Reference Manual, Addison-Wesley, 2004.

[Bond et al. 10] Gregory W. Bond et al., Specification and evaluation of transparent
behavior for SIP back-to-back user agents, Proc. 4th IPTComm,
2010.

[Clark et al. 05] David D. Clark et al., Tussle in cyberspace: Defining tomorrow's
Internet, IEEE/ACM Transactions on Networking, June 2005.

[Handley 06] Mark Handley, Why the Internet only just works, BT Technology
Journal, July 2006.

[Jackson &
Zave 95]

Michael Jackson and Pamela Zave, Deriving specifications from
requirements: An example, Proc. 17th Intl. Conf. on Software
Engineering, 1995.

Jennifer Rexford, Notes for a course on Advanced Computer
Networks, Princeton University, 2010.

[Rexford 10]

A

A
A

A

A

A
A

A A

A A

A

FURTHER READING, CONTINUED

[Zave 10b] Pamela Zave, Internet evolution and the role of software
engineering, Proc. Symp. on the Future of Software Engineering,
Springer LNCS, 2010.

[Zave 08]

[Zave 10a]

Pamela Zave, Understanding SIP through model-checking, Proc.
2nd IPTComm, 2008.

Pamela Zave, Lightweight modeling of network protocols in Alloy,
2010.

[Zave et al. 09] Pamela Zave et al., Abstractions for programming SIP back-to-back
user agents, Proc. 3rd IPTComm, 2009.

www2.research.att.com/~pamela

