
A Unified Approach to
Modeling and Programming

Ole Lehrmann Madsen
The Alexandra Institute
& Aarhus University

Co-author
Birger Møller-Pedersen
University of Oslo

Models 2010 olm 2

Dahl & Nygaard:
ACM Turing Award Winners

“for their role in the invention of object-oriented
programming, the most widely used programming

model today.” (ACM press release)

Dahl & Nygaard at the time of Simula’s development

Models 2010 olm 3

More than 30 years of collaboration

Kristen Nygaard Birger Møller-Pedersen
Co-author of
accompanying paper

Bent Bruun Kristensen

Contents

  SIMULA: back to the future
  What is a model?
  The conceptual framework of OO
  Language issues

Models 2010 olm 4

Models 2010 olm 5

SIMULA: back to the future

Models 2010 olm 6
6 © Kristen Nygaard, 2000

OBJECT ORIENTATION: PAST, PRESENT, FUTURE

KRISTEN NYGAARD

f(x) = g(x) + λ K(x, y)f(y)dy

The Atom:
From Mathematics to Monte Carlo

Models 2010 olm 7
7 © Kristen Nygaard, 2000

OBJECT ORIENTATION: PAST, PRESENT, FUTURE

KRISTEN NYGAARD

SIMULA I opening sentences (98-08-11)

The SIMULA I language report from 1965
opens with these sentences:

“The two main objects of the SIMULA
language are:

To provide a language for a precise and
standardised description of a wide class of
phenomena, belonging to what we may call

“discrete event systems”.

To provide a programming language for an
easy generation of simulation programs for

“discrete event systems”.”

Models 2010 olm 8
8 © Kristen Nygaard, 2000

OBJECT ORIENTATION: PAST, PRESENT, FUTURE

KRISTEN NYGAARD

The past

Models 2010 olm 9
9 © Kristen Nygaard, 2000

OBJECT ORIENTATION: PAST, PRESENT, FUTURE

KRISTEN NYGAARD

SIMULA I and SIMULA 67 (98-08-11)

SIMULA I
was a simulation programming language

that turned out to become
a powerful general programming language.

SIMULA 67

is a general programming language
that also is a powerful platform

for other, specialised programming languages,
as e.g. simulation languages.

Models 2010 olm 10
10 © Kristen Nygaard, 2000

OBJECT ORIENTATION: PAST, PRESENT, FUTURE

KRISTEN NYGAARD

Vehicle

Car Truck Bus

Ambulance

Virtual properties

SIMULA 67 was triggered off by
the invention of inheritance in January 1967.

The contributions of Simula .

  Object
  Class
  Subclass – single inheritance
  Virtual procedure (method)
  Nested/inner classes/procedures
  Action combination

  inner

Models 2010 olm 11

The contributions of Simula ..

  Active objects
 Quasiparrallel systems
 Coroutines

  Processes and schedulers
 Used for defining process scheduling in

class Simulation
  Later extended to concurrency
 Necessary to be able to control scheduling

  Concurrency abstractions

Models 2010 olm 12

The contributions of Simula ...

  The first examples of application
frameworks
 Class Simulation
 A domain specific language with special

syntax

  Automatic memory management
 Garbage collection

Models 2010 olm 13

Some lessons from SIMULA

  SIMULA was created as a means for making
simulation models – motivated by operations
research

  SIMULA was a general purpose programming
language

  SIMULA was used for implementation and
analysis and design

  The application domain was reflected in the
programs

  No need for structured analysis and structured
design
  SIMULA was a programming language with a built-in

method

Models 2010 olm 14

The BETA language

  For modeling and programming
  Bent Bruun Kristensen, Ole Lehrmann

Madsen, Birger Møller-Pedersen, Kristen
Nygaard

  Generalized abstraction mechanisms
 Pattern, virtual class, etc.

  Concurrency, alternation, etc.
  An associated conceptual framework
  History of Programming Languages III,

San Diego 2007
Models 2010 olm 15

Benefits of object-orientation

  Unifying perspective on most phases of
the software life cycle
  Common language core:

class, subclass, virtual, method, etc.
  Common conceptual framework

  Good support for modeling
  Programs reflect reality (the application

domain) in a natural way

  Good support for programming
  Extensibility & reuse

Models 2010 olm 16

The situation today

  Divergence of modeling and programming
  Object-oriented programming:

 Very little attention to modeling
  Mainstream modeling:

  Is widening the gap to programming
  Executable models:

 The right direction
 A long way to go

Models 2010 olm 17

Models 2010 olm 18
18 © Kristen Nygaard, 2000

OBJECT ORIENTATION: PAST, PRESENT, FUTURE

KRISTEN NYGAARD

"The first duty of a revolutionary
 is to get away with it."

Abbie Hoffmann

"The first duty of a programmer
 is to get away with it."

Hackers' Credo

The first duty of a programmer

To program is to understand
Kristen Nygaard

While programmers don’t use
UML

  Large and incomprehensible
  All you need is code (Nierstrasz)

 The code is the real thing
  “Very few real-world objects in my application”
  When time becomes critical,

the model is dropped
 Difficult to keep the model consistent with the

code
  Impedance mismatch,

as with OOA and OOD

Models 2010 olm 19

The model should be the code

  “There similarly appears to be something
fundamentally wrong with model-driven
development as it is usually understood —
instead of generating code from models,
the model should be the code.”

Oscar Nierstrasz:
Ten things I hate about object-oriented programming

Banquet speech, ECOOP 2010

Models 2010 olm 20

Models 2010 olm 21

What is a model?

Is a UML diagram a model?

Models 2010 olm 22

Classes drive me crazy ...

“There is a complete disconnect in OOP between the source
code and the runtime entities. Our tools don’t help us
because our IDEs show us classes, not objects.
I think that’s probably why Smalltalkers like to program in the
debugger. The debugger lets us get our hands on the
running objects and program them directly.
Here is my message for tool designers: please give us an
IDE that shows us objects instead of classes!”

Oscar Nierstrasz:
Ten things I hate about object-oriented programming

Banquet speech, ECOOP 2010

Models 2010 olm 23

The use of modeling

  Used in many disciplines:
 Science, engineering, architecture,

entertainment, software development, ...
  For communication of properties of

systems
  For understanding properties of existing

systems
  For analyzing properties before building

new systems
  As toys

Models 2010 olm 24

Models 2010 olm 25

Primitive societies

  Models are sometimes believed
to be useful in their own right

  Manipulation of the model might
itself cause corresponding
changes in the real world

  Sticking pins into wax models of
enemies …

  Example due to Tony Hoare

Simulation metaphor

  SIMULA describes real systems and
generated a simulation

  The simulation is the dynamic structure of
objects evolving during execution of the
program

  The simulation (program execution)
is considered to be the model

  Alan Kay has described object-oriented
programming as a view on computation
as simulation

Models 2010 olm 26

Webster:

  A model refers to a small,
abstract or actual representation of a
planned or existing entity or system
from a particular viewpoint.

Models 2010 olm 27

Abstract or actual

  Abstract:
mathematical
description

  Newton's laws
of motion

  Actual:
something physical

  A molecule:

Models 2010 olm 28

Planned or existing system

Models 2010 olm 29

Model of planned
building

Model of (existing)
solar system

From a particular viewpoint

  A good map provides the information we need for
a particular purpose – or the information the
mapmaker wants us to have

Peter Turchi:
Maps of the Imagination – the writer as a cartographer

Models 2010 olm 30

Description versus model

Models 2010 olm 31

Description: Model:

The (physical) material:

Models 2010 olm 32

Object-oriented programming

A program execution is regarded as a
physical model

simulating the behavior of a
real or imaginary system

Description versus model

  The languages for making descriptions are
important

  More attention to the model
 Objects, their properties, and actions

  We need tools showing the program
execution
 More than debuggers

  The semantics of the language

Models 2010 olm 33

Models 2010 olm 34

Conceptual framework

The basis for modeling

  We must understand and develop the
conceptual means for understanding and
organizing knowledge

  Guidelines for identifying
 Objects, properties of objects, classes,

class hierarchies, methods, activities
(tasks), …

  For understanding the limitations of
programming languages

  The theory and semantics of OO

Models 2010 olm 35

Current situation of modeling

  Mainstream programming languages:
  Modeling was never considered seriously
  In Smalltalk many classes are not

substitutable
  Subclassing: inheritance of code
  Multiple inheritance: often complicated

technicalities
  Languages with both types and classes

Models 2010 olm 36

Status of conceptual framework

  SIMULA
 Modeling central, but conceptual framework

was implicit
  BETA:

 The conceptual framework was developed
together with the language

 Test: programming and modeling
  Modeling languages:

  I am sure that conceptual framework is
considered important

Models 2010 olm 37

Models 2010 olm 38

Abstraction

  In the development of our understanding
of complex phenomena, the most
powerful tool available to the human
intellect is abstraction

(Tony Hoare, Notes on Data Structuring.
In Dahl, Dijkstra, Hoare:

Structured Programming,
Academic Press, 1972)

  Identification of phenomena and
their properties

  Formation of concepts

Conceptual means

  Identification of objects
  Classification

 Clustering
 Generalization/specialization

  Composition/aggregation
 Whole/part
 Reference composition
 Concept composition

  Association

Models 2010 olm 39

Models 2010 olm 40

Class and concept

  A concept is represented as a class
  Intension: attributes and methods
  Extension: the instances of the class

Referent system

Concept: Person, ...

Phenomena: Churchill, ...

Model system

Class: Person, ...

Object: Churchill, ...

Models 2010 olm 41

Concept hierarchies
  Subclass

The extension of Car is a subset of the extension of Vehicle
  Extends

The intension of Car extends the intension of Vehicle

c1 c2 c3 t1 t2 t3 b1 b2 b3

Car Bus Truck

Vehicle

Models 2010 olm 42

c1 c2 c3 t1 t2 t3 b1 b2 b3

Car Bus Truck

Vehicle

Tree structured classification

Subclasses with disjoint extensions

Models 2010 olm 43

re1 re2 re3 sq1 sq2 qs3 rh1 rh2 rh3

Square

Rhomb Rectangle

Parallelogram

Non-tree structured classification
Subclasses with overlapping extensions

Models 2010 olm 44

 Profession

 Nurse Teacher ...

 European

 ...

Nationality American

 ...

 Asian

Independent tree-structured
classifications of the same objects

 p1 p2 p3 ...
 p4 p5 p6
 ...

Several classification hierarchies

Models 2010 olm 45

Objects may change class
membership during their existence

LizaLarsen

LizaLarsen

LizaLarsen

time t1

time t2

time t3

Profession

student programmer manager

Dynamic classification

Models 2010 olm 46

Behavior hierarchies

Travel

Source Destination Duration Vehicle

Part/whole composition

Movement

Travel Jump Run

Generalization/specialization

Travel

Clustering

Columbus's Hannibal's march
America-expedition across the Alps

Models 2010 olm 47

Design patterns:
a challenge for abstraction

Program
fragment 1

Program
fragment 2

Program
fragment 3

myDesignPattern: X A

Y Z

Abstraction mechanisms

  The conceptual framework shows
limitations of current abstraction
mechanisms:
 Class, type, virtual, procedure, generic, etc.

  We should derive new abstraction
mechanisms

Models 2010 olm 48

Properties of phenomena in
information systems

  Physical material
  Properties of material
  Actions

Models 2010 olm 49

Models 2010 olm 50

Language issues

Issues

  Syntax
  Constraints
  Domain specific

languages
  Scenario

descriptions
  Programming by

examples

  State machines
  Associations
  Asynchronous

events
  Action sequences
  Other constructs

Models 2010 olm 51

Models 2010 olm 52

Record: { … };

Person: Record { … }

Student: Person{ … }

Employee: Person{ … }

Book: Record{ … }

Abstract
syntax

tree

Common

Representation

Diagrams and code: different views

Record

Student

Book Person

Employee

•  One to one
correspondence

•  No code
generation

A picture says more than a thousand words

  A word says more than a thousand
pictures:

Vehicle:

Models 2010 olm 53

Constraints

  Class invariants,
  Pre- and post- conditions
  Assertions
  Constraint-oriented programming
  Useful for programming as well
  Modeling/specification work could drive

this

Models 2010 olm 54

Scenario descriptions

  Emphasis on run-time – the model
  UML sequence diagrams, object diagrams,

etc., are steps in the right direction
  Should be a part of any programming

language definition
  We need a notation for the whole program

execution

Models 2010 olm 55

Programming by examples

  Derive descriptions / programs from
scenarios / examples

  From interaction diagrams to
state-machines

  Derivation of programs from examples

Models 2010 olm 56

State-machines & associations

  The justifying examples for modeling
languages

  Issues:
 Precise semantics?
 Programming language abstraction

mechanisms
 Design patterns
 Textual or graphical notation
 Embedding of graphical language

Models 2010 olm 57

Asynchronous events and actions

  Relevant for programming as well as
modeling

  Sequential actions
 The same for programming and modeling

  Concurrency
 We need better concurrency abstractions

Models 2010 olm 58

Concurrency

  Modeling of concurrent processes from the
real world was essential for SIMULA

  SIMULA had quasi-parallel processes
  Major difference between modeling

languages and programming languages
  Challenge:

 Strong need for better mechanisms for
modeling and implementing concurrent
processes

Models 2010 olm 59

Executable modeling language

  Must subsume state-of-art from
programming languages

  Must be just as efficient as programming
languages

  No need for modifying the generated code
  Just a new higher level programming

language
  A long way to go

Models 2010 olm 60

Models 2010 olm 61

Summary

A unified approach

  Language for modeling and programming
 Executable
 Non-executable

  Model: program execution
 Properties, notation, tools

  Conceptual framework

Models 2010 olm 62

Back to the future

  SIMULA:
the strength of a unified approach to
modeling and programming is fading away

  Re-unite the forces
 Don’t let programmers get away with it
 Don’t let modelers just create bubbles

Models 2010 olm 63

