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Dahl & Nygaard:  
ACM Turing Award Winners 

“for their role in the invention of object-oriented 
programming, the most widely used programming  

model today.”  (ACM press release) 

Dahl & Nygaard at the time of Simula’s development 
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More than 30 years of collaboration 

Kristen Nygaard Birger Møller-Pedersen 
Co-author of 
accompanying paper 

Bent Bruun Kristensen 
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SIMULA: back to the future 
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OBJECT ORIENTATION: PAST, PRESENT, FUTURE 

KRISTEN NYGAARD 

f(x) = g(x) + λ   K(x, y)f(y)dy 

The Atom: 
From Mathematics to Monte Carlo 
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OBJECT ORIENTATION: PAST, PRESENT, FUTURE 

KRISTEN NYGAARD 

SIMULA I opening sentences (98-08-11) 

The SIMULA I language report from 1965  
opens with these sentences: 

“The two main objects of the SIMULA 
language are: 

To provide a language for a precise and 
standardised description of a wide class of 
phenomena, belonging to what we may call 

“discrete event systems”. 

To provide a programming language for an 
easy generation of simulation programs for 

“discrete event systems”.” 
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OBJECT ORIENTATION: PAST, PRESENT, FUTURE 

KRISTEN NYGAARD 

The past 
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OBJECT ORIENTATION: PAST, PRESENT, FUTURE 

KRISTEN NYGAARD 

SIMULA I and SIMULA 67 (98-08-11) 

SIMULA I  
was a simulation programming language  

that turned out to become  
a powerful general programming language.  

SIMULA 67 

is a general programming language  
that also is a powerful platform  

for other, specialised programming languages,  
as e.g. simulation languages. 
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OBJECT ORIENTATION: PAST, PRESENT, FUTURE 

KRISTEN NYGAARD 

Vehicle 

Car Truck Bus 

Ambulance 

Virtual properties 

SIMULA 67 was triggered off by  
the invention of inheritance in January 1967. 



The contributions of Simula . 

  Object 
  Class 
  Subclass – single inheritance 
  Virtual procedure (method) 
  Nested/inner classes/procedures 
  Action combination 

  inner 

Models 2010 olm 11 



The contributions of Simula .. 

  Active objects 
 Quasiparrallel systems 
 Coroutines 

  Processes and schedulers 
 Used for defining process scheduling in 

class Simulation 
  Later extended to concurrency 
 Necessary to be able to control scheduling 

  Concurrency abstractions 

Models 2010 olm 12 



The contributions of Simula ... 

  The first examples of application 
frameworks 
 Class Simulation 
 A domain specific language with special 

syntax 

  Automatic memory management  
 Garbage collection 
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Some lessons from SIMULA 

  SIMULA was created as a means for making 
simulation models – motivated by operations 
research 

  SIMULA was a general purpose programming 
language 

  SIMULA was used for implementation and 
analysis and design 

  The application domain was reflected in the 
programs 

  No need for structured analysis and structured 
design 
  SIMULA was a programming language with a built-in 

method 
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The BETA language 

  For modeling and programming 
  Bent Bruun Kristensen, Ole Lehrmann 

Madsen, Birger Møller-Pedersen, Kristen 
Nygaard 

  Generalized abstraction mechanisms 
 Pattern, virtual class, etc. 

  Concurrency, alternation, etc. 
  An associated conceptual framework  
  History of Programming Languages III, 

San Diego 2007 
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Benefits of object-orientation 

  Unifying perspective on most phases of 
the software life cycle 
  Common language core:  

class, subclass, virtual, method, etc. 
  Common conceptual framework 

  Good support for modeling 
  Programs reflect reality (the application 

domain) in a natural way 

  Good support for programming 
  Extensibility & reuse 
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The situation today 

  Divergence of modeling and programming 
  Object-oriented programming: 

 Very little attention to modeling  
  Mainstream modeling: 

  Is widening the gap to programming 
  Executable models: 

 The right direction 
 A long way to go 
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OBJECT ORIENTATION: PAST, PRESENT, FUTURE 

KRISTEN NYGAARD 

"The first duty of a revolutionary  
 is to get away with it." 

Abbie Hoffmann 

"The first duty of a programmer  
  is to get away with it." 

Hackers' Credo 

The first duty of a programmer 

To program is to understand 
Kristen Nygaard 



While programmers don’t use 
UML 

  Large and incomprehensible 
  All you need is code (Nierstrasz) 

 The code is the real thing 
  “Very few real-world objects in my application” 
  When time becomes critical,  

the model is dropped 
 Difficult to keep the model consistent with the 

code 
  Impedance mismatch,  

as with OOA and OOD 
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The model should be the code 

  “There similarly appears to be something 
fundamentally wrong with model-driven 
development as it is usually understood — 
instead of generating code from models, 
the model should be the code.” 

Oscar Nierstrasz:  
Ten things I hate about object-oriented programming   

Banquet speech, ECOOP 2010 
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What is a model? 



Is a UML diagram a model? 
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Classes drive me crazy ...  

“There is a complete disconnect in OOP between the source 
code and the runtime entities. Our tools don’t help us 
because our IDEs show us classes, not objects. 
I think that’s probably why Smalltalkers like to program in the 
debugger. The debugger lets us get our hands on the 
running objects and program them directly. 
Here is my message for tool designers: please give us an 
IDE that shows us objects instead of classes!” 

Oscar Nierstrasz:  
Ten things I hate about object-oriented programming   

Banquet speech, ECOOP 2010 
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The use of modeling 

  Used in many disciplines: 
 Science, engineering, architecture, 

entertainment, software development, ... 
  For communication of properties of 

systems 
  For understanding properties of existing 

systems 
  For analyzing properties before building 

new systems 
  As toys 
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Primitive societies 

  Models are sometimes believed  
to be useful in their own right  

  Manipulation of the model might 
itself cause corresponding 
changes in the real world 

  Sticking pins into wax models of 
enemies … 

  Example due to Tony Hoare 



Simulation metaphor 

  SIMULA describes real systems and 
generated a simulation 

  The simulation is the dynamic structure of 
objects evolving during execution of the 
program 

  The simulation (program execution)  
is considered to be the model 

  Alan Kay has described object-oriented 
programming as a view on computation 
as simulation  
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Webster: 

  A model refers to a small,  
abstract or actual representation of a 
planned or existing entity or system  
from a particular viewpoint. 
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Abstract or actual 

  Abstract: 
mathematical 
description 

  Newton's laws  
of motion  

  Actual:  
something physical 

  A molecule:  
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Planned or existing system 
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Model of planned 
building 

Model of (existing) 
solar system 



From a particular viewpoint 

  A good map provides the information we need for  
a particular purpose –  or the information the 
mapmaker wants us to have 

Peter Turchi:  
Maps of the Imagination – the writer as a cartographer 
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Description versus model 
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Description: Model: 

The (physical) material: 
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Object-oriented programming 

A program execution is regarded as a 
physical model  

simulating the behavior of a  
real or imaginary system 



Description versus model 

  The languages for making descriptions are 
important 

  More attention to the model 
 Objects, their properties, and actions 

  We need tools showing the program 
execution 
 More than debuggers 

  The semantics of the language 
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Conceptual framework 



The basis for modeling 

  We must understand and develop the 
conceptual means for understanding and 
organizing knowledge 

  Guidelines for identifying  
 Objects, properties of objects, classes, 

class hierarchies, methods, activities 
(tasks), … 

  For understanding the limitations of 
programming languages 

  The theory and semantics of OO 
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Current situation of modeling 

  Mainstream programming languages: 
  Modeling was never considered seriously 
  In Smalltalk many classes are not 

substitutable 
  Subclassing: inheritance of code 
  Multiple inheritance: often complicated 

technicalities 
  Languages with both types and classes 
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Status of conceptual framework 

  SIMULA 
 Modeling central, but conceptual framework 

was implicit 
  BETA:  

 The conceptual framework was developed 
together with the language 

 Test: programming and modeling 
  Modeling languages:  

  I am sure that conceptual framework is 
considered important 
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Abstraction 

  In the development of our understanding 
of complex phenomena, the most 
powerful tool available to the human 
intellect is abstraction 

(Tony Hoare, Notes on Data Structuring.  
In Dahl, Dijkstra, Hoare:  

Structured Programming,  
Academic Press, 1972) 

  Identification of phenomena and  
their properties 

  Formation of concepts 



Conceptual means 

  Identification of objects 
  Classification 

 Clustering  
 Generalization/specialization  

  Composition/aggregation 
 Whole/part 
 Reference composition 
 Concept composition 

  Association 
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Class and concept 

  A concept is represented as a class 
  Intension: attributes and methods 
  Extension: the instances of the class 

Referent system 

Concept: Person, ... 

Phenomena: Churchill, ... 

Model system 

Class: Person, ... 

Object: Churchill, ... 
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Concept hierarchies 
  Subclass 

The extension of Car is a subset of the extension of Vehicle 
  Extends 

The intension of Car extends the intension of Vehicle 

c1  c2  c3                    t1   t2   t3                         b1  b2  b3 

Car Bus Truck 

Vehicle 
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c1  c2  c3                    t1   t2   t3                         b1  b2  b3 

Car Bus Truck 

Vehicle 

Tree structured classification 

Subclasses with disjoint extensions 
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re1  re2 re3               sq1 sq2 qs3                    rh1 rh2 rh3  

Square 

Rhomb Rectangle 

Parallelogram 

Non-tree structured classification 
Subclasses with overlapping extensions 
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                                        Profession 

                                Nurse     Teacher     ... 

            European   

           ... 

Nationality           American   

             ... 

                      Asian 

Independent tree-structured 
classifications of the same objects 

   p1    p2    p3      ... 
   p4    p5    p6    
   ... 

Several classification hierarchies 
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Objects may change class 
membership during their existence 

LizaLarsen 

LizaLarsen 

LizaLarsen 

time t1 

time t2 

time t3 

Profession 

student programmer manager 

Dynamic classification 
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Behavior hierarchies 

Travel 

Source    Destination    Duration     Vehicle 

Part/whole composition 

Movement 

Travel     Jump     Run     

Generalization/specialization 

Travel 

Clustering 

Columbus's                             Hannibal's march 
America-expedition                   across the Alps  
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Design patterns:  
a challenge for abstraction 

Program 
fragment 1 

Program 
fragment 2 

Program 
fragment 3 

myDesignPattern: X A 

Y Z 



Abstraction mechanisms 

  The conceptual framework shows 
limitations of current abstraction 
mechanisms: 
 Class, type, virtual, procedure, generic, etc. 

  We should derive new abstraction 
mechanisms 
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Properties of phenomena in 
information systems 

  Physical material 
  Properties of material 
  Actions 

Models 2010 olm 49 



Models 2010 olm 50 

Language issues 



Issues  

  Syntax 
  Constraints 
  Domain specific 

languages 
  Scenario 

descriptions 
  Programming by 

examples 

  State machines 
  Associations 
  Asynchronous 

events 
  Action sequences 
  Other constructs 
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Record: { … }; 

Person: Record { … } 

Student: Person{ … } 

Employee: Person{ … } 

Book: Record{ … } 

Abstract 
syntax 

tree 

Common  

Representation 

Diagrams and code: different views 

Record 

Student 

Book Person 

Employee 

•  One to one 
correspondence 

•  No code 
generation 



A picture says more than a thousand words 

  A word says more than a thousand 
pictures: 

Vehicle: 
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Constraints 

  Class invariants, 
  Pre- and post- conditions 
  Assertions 
  Constraint-oriented programming 
  Useful for programming as well 
  Modeling/specification work could drive 

this 
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Scenario descriptions 

  Emphasis on run-time – the model 
  UML sequence diagrams, object diagrams, 

etc., are steps in the right direction 
  Should be a part of any programming 

language definition 
  We need a notation for the whole program 

execution 
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Programming by examples 

  Derive descriptions / programs from 
scenarios / examples 

  From interaction diagrams to  
state-machines 

  Derivation of programs from examples 
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State-machines & associations 

  The justifying examples for modeling 
languages 

  Issues: 
 Precise semantics? 
 Programming language abstraction 

mechanisms 
 Design patterns 
 Textual or graphical notation   
 Embedding of graphical language 
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Asynchronous events and actions 

  Relevant for programming as well as 
modeling 

  Sequential actions 
 The same for programming and modeling 

  Concurrency 
 We need better concurrency abstractions 
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Concurrency 

  Modeling of concurrent processes from the 
real world was essential for SIMULA 

  SIMULA had quasi-parallel processes 
  Major difference between modeling 

languages and programming languages 
  Challenge: 

 Strong need for better mechanisms for 
modeling and implementing concurrent 
processes 
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Executable modeling language 

  Must subsume state-of-art from 
programming languages 

  Must be just as efficient as programming 
languages 

  No need for modifying the generated  code 
  Just a new higher level programming 

language 
  A long way to go  
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Summary  



A unified approach 

  Language for modeling and programming 
 Executable 
 Non-executable 

  Model: program execution 
 Properties, notation, tools 

  Conceptual framework 
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Back to the future 

  SIMULA:  
the strength of a unified approach to 
modeling and programming is fading away 

  Re-unite the forces 
 Don’t let programmers get  away with it 
 Don’t let modelers just create bubbles 
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